| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressid.1 |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 2 |
|
elex |
⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ V ) |
| 3 |
|
eqid |
⊢ ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s 𝐴 ) |
| 4 |
3 1
|
ressid2 |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = 𝑊 ) |
| 5 |
|
ssid |
⊢ 𝐵 ⊆ 𝐵 |
| 6 |
|
incom |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |
| 7 |
|
dfss2 |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∩ 𝐴 ) = 𝐵 ) |
| 8 |
7
|
biimpi |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∩ 𝐴 ) = 𝐵 ) |
| 9 |
6 8
|
eqtrid |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
| 10 |
5 9
|
sseqtrrid |
⊢ ( 𝐵 ⊆ 𝐴 → 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 11 |
|
elex |
⊢ ( 𝑊 ∈ V → 𝑊 ∈ V ) |
| 12 |
|
inex1g |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
| 13 |
|
eqid |
⊢ ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) |
| 14 |
13 1
|
ressid2 |
⊢ ( ( 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ∧ 𝑊 ∈ V ∧ ( 𝐴 ∩ 𝐵 ) ∈ V ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = 𝑊 ) |
| 15 |
10 11 12 14
|
syl3an |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = 𝑊 ) |
| 16 |
4 15
|
eqtr4d |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 17 |
16
|
3expb |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ V ) ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 18 |
|
inass |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐵 ) = ( 𝐴 ∩ ( 𝐵 ∩ 𝐵 ) ) |
| 19 |
|
inidm |
⊢ ( 𝐵 ∩ 𝐵 ) = 𝐵 |
| 20 |
19
|
ineq2i |
⊢ ( 𝐴 ∩ ( 𝐵 ∩ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) |
| 21 |
18 20
|
eqtr2i |
⊢ ( 𝐴 ∩ 𝐵 ) = ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐵 ) |
| 22 |
21
|
opeq2i |
⊢ 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 = 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐵 ) 〉 |
| 23 |
22
|
oveq2i |
⊢ ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐵 ) 〉 ) |
| 24 |
3 1
|
ressval2 |
⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) |
| 25 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 26 |
|
sstr |
⊢ ( ( 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
| 27 |
25 26
|
mpan2 |
⊢ ( 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) → 𝐵 ⊆ 𝐴 ) |
| 28 |
27
|
con3i |
⊢ ( ¬ 𝐵 ⊆ 𝐴 → ¬ 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 29 |
13 1
|
ressval2 |
⊢ ( ( ¬ 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ∧ 𝑊 ∈ V ∧ ( 𝐴 ∩ 𝐵 ) ∈ V ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐵 ) 〉 ) ) |
| 30 |
28 11 12 29
|
syl3an |
⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐵 ) 〉 ) ) |
| 31 |
23 24 30
|
3eqtr4a |
⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 32 |
31
|
3expb |
⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ V ) ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 33 |
17 32
|
pm2.61ian |
⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 34 |
|
reldmress |
⊢ Rel dom ↾s |
| 35 |
34
|
ovprc1 |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s 𝐴 ) = ∅ ) |
| 36 |
34
|
ovprc1 |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ∅ ) |
| 37 |
35 36
|
eqtr4d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 38 |
37
|
adantr |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 39 |
33 38
|
pm2.61ian |
⊢ ( 𝐴 ∈ V → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 40 |
2 39
|
syl |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |