Step |
Hyp |
Ref |
Expression |
1 |
|
ressiooinf.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
ressiooinf.s |
⊢ 𝑆 = inf ( 𝐴 , ℝ* , < ) |
3 |
|
ressiooinf.n |
⊢ ( 𝜑 → ¬ 𝑆 ∈ 𝐴 ) |
4 |
|
ressiooinf.i |
⊢ 𝐼 = ( 𝑆 (,) +∞ ) |
5 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
6 |
5
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ* ) |
7 |
1 6
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ ℝ* ) |
9 |
8
|
infxrcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
10 |
2 9
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑆 ∈ ℝ* ) |
11 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → +∞ ∈ ℝ* ) |
13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ ℝ ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
15 |
13 14
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
16 |
7
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
17 |
|
infxrlb |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ 𝑥 ) |
18 |
8 14 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ 𝑥 ) |
19 |
2 18
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑆 ≤ 𝑥 ) |
20 |
|
id |
⊢ ( 𝑥 = 𝑆 → 𝑥 = 𝑆 ) |
21 |
20
|
eqcomd |
⊢ ( 𝑥 = 𝑆 → 𝑆 = 𝑥 ) |
22 |
21
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆 ) → 𝑆 = 𝑥 ) |
23 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆 ) → 𝑥 ∈ 𝐴 ) |
24 |
22 23
|
eqeltrd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆 ) → 𝑆 ∈ 𝐴 ) |
25 |
24
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 = 𝑆 ) → 𝑆 ∈ 𝐴 ) |
26 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 = 𝑆 ) → ¬ 𝑆 ∈ 𝐴 ) |
27 |
25 26
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 = 𝑆 ) |
28 |
27
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ 𝑆 ) |
29 |
28
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑆 ≠ 𝑥 ) |
30 |
10 16 19 29
|
xrleneltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑆 < 𝑥 ) |
31 |
15
|
ltpnfd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 < +∞ ) |
32 |
10 12 15 30 31
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( 𝑆 (,) +∞ ) ) |
33 |
32 4
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐼 ) |
34 |
33
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐼 ) |
35 |
|
dfss3 |
⊢ ( 𝐴 ⊆ 𝐼 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐼 ) |
36 |
34 35
|
sylibr |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐼 ) |