Metamath Proof Explorer


Theorem ressiooinf

Description: If the infimum does not belong to a set of reals, the set is a subset of the unbounded above, left-open interval, with lower bound equal to the infimum. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses ressiooinf.a ( 𝜑𝐴 ⊆ ℝ )
ressiooinf.s 𝑆 = inf ( 𝐴 , ℝ* , < )
ressiooinf.n ( 𝜑 → ¬ 𝑆𝐴 )
ressiooinf.i 𝐼 = ( 𝑆 (,) +∞ )
Assertion ressiooinf ( 𝜑𝐴𝐼 )

Proof

Step Hyp Ref Expression
1 ressiooinf.a ( 𝜑𝐴 ⊆ ℝ )
2 ressiooinf.s 𝑆 = inf ( 𝐴 , ℝ* , < )
3 ressiooinf.n ( 𝜑 → ¬ 𝑆𝐴 )
4 ressiooinf.i 𝐼 = ( 𝑆 (,) +∞ )
5 ressxr ℝ ⊆ ℝ*
6 5 a1i ( 𝜑 → ℝ ⊆ ℝ* )
7 1 6 sstrd ( 𝜑𝐴 ⊆ ℝ* )
8 7 adantr ( ( 𝜑𝑥𝐴 ) → 𝐴 ⊆ ℝ* )
9 8 infxrcld ( ( 𝜑𝑥𝐴 ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* )
10 2 9 eqeltrid ( ( 𝜑𝑥𝐴 ) → 𝑆 ∈ ℝ* )
11 pnfxr +∞ ∈ ℝ*
12 11 a1i ( ( 𝜑𝑥𝐴 ) → +∞ ∈ ℝ* )
13 1 adantr ( ( 𝜑𝑥𝐴 ) → 𝐴 ⊆ ℝ )
14 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
15 13 14 sseldd ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ℝ )
16 7 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ℝ* )
17 infxrlb ( ( 𝐴 ⊆ ℝ*𝑥𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ 𝑥 )
18 8 14 17 syl2anc ( ( 𝜑𝑥𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ 𝑥 )
19 2 18 eqbrtrid ( ( 𝜑𝑥𝐴 ) → 𝑆𝑥 )
20 id ( 𝑥 = 𝑆𝑥 = 𝑆 )
21 20 eqcomd ( 𝑥 = 𝑆𝑆 = 𝑥 )
22 21 adantl ( ( 𝑥𝐴𝑥 = 𝑆 ) → 𝑆 = 𝑥 )
23 simpl ( ( 𝑥𝐴𝑥 = 𝑆 ) → 𝑥𝐴 )
24 22 23 eqeltrd ( ( 𝑥𝐴𝑥 = 𝑆 ) → 𝑆𝐴 )
25 24 adantll ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑥 = 𝑆 ) → 𝑆𝐴 )
26 3 ad2antrr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑥 = 𝑆 ) → ¬ 𝑆𝐴 )
27 25 26 pm2.65da ( ( 𝜑𝑥𝐴 ) → ¬ 𝑥 = 𝑆 )
28 27 neqned ( ( 𝜑𝑥𝐴 ) → 𝑥𝑆 )
29 28 necomd ( ( 𝜑𝑥𝐴 ) → 𝑆𝑥 )
30 10 16 19 29 xrleneltd ( ( 𝜑𝑥𝐴 ) → 𝑆 < 𝑥 )
31 15 ltpnfd ( ( 𝜑𝑥𝐴 ) → 𝑥 < +∞ )
32 10 12 15 30 31 eliood ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ( 𝑆 (,) +∞ ) )
33 32 4 eleqtrrdi ( ( 𝜑𝑥𝐴 ) → 𝑥𝐼 )
34 33 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝑥𝐼 )
35 dfss3 ( 𝐴𝐼 ↔ ∀ 𝑥𝐴 𝑥𝐼 )
36 34 35 sylibr ( 𝜑𝐴𝐼 )