Step |
Hyp |
Ref |
Expression |
1 |
|
ressioosup.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
ressioosup.s |
⊢ 𝑆 = sup ( 𝐴 , ℝ* , < ) |
3 |
|
ressioosup.n |
⊢ ( 𝜑 → ¬ 𝑆 ∈ 𝐴 ) |
4 |
|
ressioosup.i |
⊢ 𝐼 = ( -∞ (,) 𝑆 ) |
5 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
6 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → -∞ ∈ ℝ* ) |
7 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
8 |
7
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ* ) |
9 |
1 8
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ ℝ* ) |
11 |
10
|
supxrcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
12 |
2 11
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑆 ∈ ℝ* ) |
13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ ℝ ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
15 |
13 14
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
16 |
15
|
mnfltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → -∞ < 𝑥 ) |
17 |
9
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
18 |
|
supxrub |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ sup ( 𝐴 , ℝ* , < ) ) |
19 |
10 14 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ sup ( 𝐴 , ℝ* , < ) ) |
20 |
2
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑆 = sup ( 𝐴 , ℝ* , < ) ) |
21 |
20
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = 𝑆 ) |
22 |
19 21
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ 𝑆 ) |
23 |
|
id |
⊢ ( 𝑥 = 𝑆 → 𝑥 = 𝑆 ) |
24 |
23
|
eqcomd |
⊢ ( 𝑥 = 𝑆 → 𝑆 = 𝑥 ) |
25 |
24
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆 ) → 𝑆 = 𝑥 ) |
26 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆 ) → 𝑥 ∈ 𝐴 ) |
27 |
25 26
|
eqeltrd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆 ) → 𝑆 ∈ 𝐴 ) |
28 |
27
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 = 𝑆 ) → 𝑆 ∈ 𝐴 ) |
29 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 = 𝑆 ) → ¬ 𝑆 ∈ 𝐴 ) |
30 |
28 29
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 = 𝑆 ) |
31 |
30
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ 𝑆 ) |
32 |
17 12 22 31
|
xrleneltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 < 𝑆 ) |
33 |
6 12 15 16 32
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( -∞ (,) 𝑆 ) ) |
34 |
33 4
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐼 ) |
35 |
34
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐼 ) |
36 |
|
dfss3 |
⊢ ( 𝐴 ⊆ 𝐼 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐼 ) |
37 |
35 36
|
sylibr |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐼 ) |