Metamath Proof Explorer


Theorem ressle

Description: le is unaffected by restriction. (Contributed by Mario Carneiro, 3-Nov-2015)

Ref Expression
Hypotheses ressle.1 𝑊 = ( 𝐾s 𝐴 )
ressle.2 = ( le ‘ 𝐾 )
Assertion ressle ( 𝐴𝑉 = ( le ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 ressle.1 𝑊 = ( 𝐾s 𝐴 )
2 ressle.2 = ( le ‘ 𝐾 )
3 pleid le = Slot ( le ‘ ndx )
4 plendxnbasendx ( le ‘ ndx ) ≠ ( Base ‘ ndx )
5 1 2 3 4 resseqnbas ( 𝐴𝑉 = ( le ‘ 𝑊 ) )