Metamath Proof Explorer
Description: le is unaffected by restriction. (Contributed by Mario Carneiro, 3-Nov-2015)
|
|
Ref |
Expression |
|
Hypotheses |
ressle.1 |
⊢ 𝑊 = ( 𝐾 ↾s 𝐴 ) |
|
|
ressle.2 |
⊢ ≤ = ( le ‘ 𝐾 ) |
|
Assertion |
ressle |
⊢ ( 𝐴 ∈ 𝑉 → ≤ = ( le ‘ 𝑊 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ressle.1 |
⊢ 𝑊 = ( 𝐾 ↾s 𝐴 ) |
2 |
|
ressle.2 |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
pleid |
⊢ le = Slot ( le ‘ ndx ) |
4 |
|
plendxnbasendx |
⊢ ( le ‘ ndx ) ≠ ( Base ‘ ndx ) |
5 |
1 2 3 4
|
resseqnbas |
⊢ ( 𝐴 ∈ 𝑉 → ≤ = ( le ‘ 𝑊 ) ) |