Metamath Proof Explorer


Theorem resslem

Description: Other elements of a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014) (Revised by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses resslem.r 𝑅 = ( 𝑊s 𝐴 )
resslem.e 𝐶 = ( 𝐸𝑊 )
resslem.f 𝐸 = Slot 𝑁
resslem.n 𝑁 ∈ ℕ
resslem.b 1 < 𝑁
Assertion resslem ( 𝐴𝑉𝐶 = ( 𝐸𝑅 ) )

Proof

Step Hyp Ref Expression
1 resslem.r 𝑅 = ( 𝑊s 𝐴 )
2 resslem.e 𝐶 = ( 𝐸𝑊 )
3 resslem.f 𝐸 = Slot 𝑁
4 resslem.n 𝑁 ∈ ℕ
5 resslem.b 1 < 𝑁
6 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
7 1 6 ressid2 ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → 𝑅 = 𝑊 )
8 7 fveq2d ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐸𝑅 ) = ( 𝐸𝑊 ) )
9 8 3expib ( ( Base ‘ 𝑊 ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐸𝑅 ) = ( 𝐸𝑊 ) ) )
10 1 6 ressval2 ( ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → 𝑅 = ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ) )
11 10 fveq2d ( ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐸𝑅 ) = ( 𝐸 ‘ ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ) ) )
12 3 4 ndxid 𝐸 = Slot ( 𝐸 ‘ ndx )
13 3 4 ndxarg ( 𝐸 ‘ ndx ) = 𝑁
14 1re 1 ∈ ℝ
15 14 5 gtneii 𝑁 ≠ 1
16 13 15 eqnetri ( 𝐸 ‘ ndx ) ≠ 1
17 basendx ( Base ‘ ndx ) = 1
18 16 17 neeqtrri ( 𝐸 ‘ ndx ) ≠ ( Base ‘ ndx )
19 12 18 setsnid ( 𝐸𝑊 ) = ( 𝐸 ‘ ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ) )
20 11 19 eqtr4di ( ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐸𝑅 ) = ( 𝐸𝑊 ) )
21 20 3expib ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐸𝑅 ) = ( 𝐸𝑊 ) ) )
22 9 21 pm2.61i ( ( 𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐸𝑅 ) = ( 𝐸𝑊 ) )
23 reldmress Rel dom ↾s
24 23 ovprc1 ( ¬ 𝑊 ∈ V → ( 𝑊s 𝐴 ) = ∅ )
25 1 24 syl5eq ( ¬ 𝑊 ∈ V → 𝑅 = ∅ )
26 25 fveq2d ( ¬ 𝑊 ∈ V → ( 𝐸𝑅 ) = ( 𝐸 ‘ ∅ ) )
27 3 str0 ∅ = ( 𝐸 ‘ ∅ )
28 26 27 eqtr4di ( ¬ 𝑊 ∈ V → ( 𝐸𝑅 ) = ∅ )
29 fvprc ( ¬ 𝑊 ∈ V → ( 𝐸𝑊 ) = ∅ )
30 28 29 eqtr4d ( ¬ 𝑊 ∈ V → ( 𝐸𝑅 ) = ( 𝐸𝑊 ) )
31 30 adantr ( ( ¬ 𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐸𝑅 ) = ( 𝐸𝑊 ) )
32 22 31 pm2.61ian ( 𝐴𝑉 → ( 𝐸𝑅 ) = ( 𝐸𝑊 ) )
33 2 32 eqtr4id ( 𝐴𝑉𝐶 = ( 𝐸𝑅 ) )