| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressmpl.s | ⊢ 𝑆  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | ressmpl.h | ⊢ 𝐻  =  ( 𝑅  ↾s  𝑇 ) | 
						
							| 3 |  | ressmpl.u | ⊢ 𝑈  =  ( 𝐼  mPoly  𝐻 ) | 
						
							| 4 |  | ressmpl.b | ⊢ 𝐵  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | ressmpl.1 | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 6 |  | ressmpl.2 | ⊢ ( 𝜑  →  𝑇  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 7 |  | ressmpl.p | ⊢ 𝑃  =  ( 𝑆  ↾s  𝐵 ) | 
						
							| 8 |  | eqid | ⊢ ( 𝐼  mPwSer  𝐻 )  =  ( 𝐼  mPwSer  𝐻 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ ( 𝐼  mPwSer  𝐻 ) )  =  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) | 
						
							| 10 | 3 8 4 9 | mplbasss | ⊢ 𝐵  ⊆  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) | 
						
							| 11 | 10 | sseli | ⊢ ( 𝑋  ∈  𝐵  →  𝑋  ∈  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) | 
						
							| 12 | 10 | sseli | ⊢ ( 𝑌  ∈  𝐵  →  𝑌  ∈  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) | 
						
							| 13 | 11 12 | anim12i | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∈  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) )  ∧  𝑌  ∈  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( 𝐼  mPwSer  𝑅 )  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 15 |  | eqid | ⊢ ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) )  =  ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) | 
						
							| 16 | 14 2 8 9 15 6 | resspsrmul | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) )  ∧  𝑌  ∈  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) )  →  ( 𝑋 ( .r ‘ ( 𝐼  mPwSer  𝐻 ) ) 𝑌 )  =  ( 𝑋 ( .r ‘ ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) ) 𝑌 ) ) | 
						
							| 17 | 13 16 | sylan2 | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 ( .r ‘ ( 𝐼  mPwSer  𝐻 ) ) 𝑌 )  =  ( 𝑋 ( .r ‘ ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) ) 𝑌 ) ) | 
						
							| 18 | 4 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 19 | 3 8 4 | mplval2 | ⊢ 𝑈  =  ( ( 𝐼  mPwSer  𝐻 )  ↾s  𝐵 ) | 
						
							| 20 |  | eqid | ⊢ ( .r ‘ ( 𝐼  mPwSer  𝐻 ) )  =  ( .r ‘ ( 𝐼  mPwSer  𝐻 ) ) | 
						
							| 21 | 19 20 | ressmulr | ⊢ ( 𝐵  ∈  V  →  ( .r ‘ ( 𝐼  mPwSer  𝐻 ) )  =  ( .r ‘ 𝑈 ) ) | 
						
							| 22 | 18 21 | ax-mp | ⊢ ( .r ‘ ( 𝐼  mPwSer  𝐻 ) )  =  ( .r ‘ 𝑈 ) | 
						
							| 23 | 22 | oveqi | ⊢ ( 𝑋 ( .r ‘ ( 𝐼  mPwSer  𝐻 ) ) 𝑌 )  =  ( 𝑋 ( .r ‘ 𝑈 ) 𝑌 ) | 
						
							| 24 |  | fvex | ⊢ ( Base ‘ 𝑆 )  ∈  V | 
						
							| 25 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 26 | 1 14 25 | mplval2 | ⊢ 𝑆  =  ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ 𝑆 ) ) | 
						
							| 27 |  | eqid | ⊢ ( .r ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( .r ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 28 | 26 27 | ressmulr | ⊢ ( ( Base ‘ 𝑆 )  ∈  V  →  ( .r ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( .r ‘ 𝑆 ) ) | 
						
							| 29 | 24 28 | ax-mp | ⊢ ( .r ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( .r ‘ 𝑆 ) | 
						
							| 30 |  | fvex | ⊢ ( Base ‘ ( 𝐼  mPwSer  𝐻 ) )  ∈  V | 
						
							| 31 | 15 27 | ressmulr | ⊢ ( ( Base ‘ ( 𝐼  mPwSer  𝐻 ) )  ∈  V  →  ( .r ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( .r ‘ ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) ) ) | 
						
							| 32 | 30 31 | ax-mp | ⊢ ( .r ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( .r ‘ ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) ) | 
						
							| 33 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 34 | 7 33 | ressmulr | ⊢ ( 𝐵  ∈  V  →  ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑃 ) ) | 
						
							| 35 | 18 34 | ax-mp | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑃 ) | 
						
							| 36 | 29 32 35 | 3eqtr3i | ⊢ ( .r ‘ ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) )  =  ( .r ‘ 𝑃 ) | 
						
							| 37 | 36 | oveqi | ⊢ ( 𝑋 ( .r ‘ ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) ) 𝑌 )  =  ( 𝑋 ( .r ‘ 𝑃 ) 𝑌 ) | 
						
							| 38 | 17 23 37 | 3eqtr3g | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 ( .r ‘ 𝑈 ) 𝑌 )  =  ( 𝑋 ( .r ‘ 𝑃 ) 𝑌 ) ) |