| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressmpl.s | ⊢ 𝑆  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | ressmpl.h | ⊢ 𝐻  =  ( 𝑅  ↾s  𝑇 ) | 
						
							| 3 |  | ressmpl.u | ⊢ 𝑈  =  ( 𝐼  mPoly  𝐻 ) | 
						
							| 4 |  | ressmpl.b | ⊢ 𝐵  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | ressmpl.1 | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 6 |  | ressmpl.2 | ⊢ ( 𝜑  →  𝑇  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 7 |  | ressmpl.p | ⊢ 𝑃  =  ( 𝑆  ↾s  𝐵 ) | 
						
							| 8 |  | eqid | ⊢ ( 𝐼  mPwSer  𝐻 )  =  ( 𝐼  mPwSer  𝐻 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ ( 𝐼  mPwSer  𝐻 ) )  =  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) | 
						
							| 10 | 3 8 4 9 | mplbasss | ⊢ 𝐵  ⊆  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) | 
						
							| 11 | 10 | sseli | ⊢ ( 𝑌  ∈  𝐵  →  𝑌  ∈  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( 𝐼  mPwSer  𝑅 )  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 13 |  | eqid | ⊢ ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) )  =  ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) | 
						
							| 14 | 12 2 8 9 13 6 | resspsrvsca | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) )  →  ( 𝑋 (  ·𝑠  ‘ ( 𝐼  mPwSer  𝐻 ) ) 𝑌 )  =  ( 𝑋 (  ·𝑠  ‘ ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) ) 𝑌 ) ) | 
						
							| 15 | 11 14 | sylanr2 | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 (  ·𝑠  ‘ ( 𝐼  mPwSer  𝐻 ) ) 𝑌 )  =  ( 𝑋 (  ·𝑠  ‘ ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) ) 𝑌 ) ) | 
						
							| 16 | 4 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 17 | 3 8 4 | mplval2 | ⊢ 𝑈  =  ( ( 𝐼  mPwSer  𝐻 )  ↾s  𝐵 ) | 
						
							| 18 |  | eqid | ⊢ (  ·𝑠  ‘ ( 𝐼  mPwSer  𝐻 ) )  =  (  ·𝑠  ‘ ( 𝐼  mPwSer  𝐻 ) ) | 
						
							| 19 | 17 18 | ressvsca | ⊢ ( 𝐵  ∈  V  →  (  ·𝑠  ‘ ( 𝐼  mPwSer  𝐻 ) )  =  (  ·𝑠  ‘ 𝑈 ) ) | 
						
							| 20 | 16 19 | ax-mp | ⊢ (  ·𝑠  ‘ ( 𝐼  mPwSer  𝐻 ) )  =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 21 | 20 | oveqi | ⊢ ( 𝑋 (  ·𝑠  ‘ ( 𝐼  mPwSer  𝐻 ) ) 𝑌 )  =  ( 𝑋 (  ·𝑠  ‘ 𝑈 ) 𝑌 ) | 
						
							| 22 |  | fvex | ⊢ ( Base ‘ 𝑆 )  ∈  V | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 24 | 1 12 23 | mplval2 | ⊢ 𝑆  =  ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ 𝑆 ) ) | 
						
							| 25 |  | eqid | ⊢ (  ·𝑠  ‘ ( 𝐼  mPwSer  𝑅 ) )  =  (  ·𝑠  ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 26 | 24 25 | ressvsca | ⊢ ( ( Base ‘ 𝑆 )  ∈  V  →  (  ·𝑠  ‘ ( 𝐼  mPwSer  𝑅 ) )  =  (  ·𝑠  ‘ 𝑆 ) ) | 
						
							| 27 | 22 26 | ax-mp | ⊢ (  ·𝑠  ‘ ( 𝐼  mPwSer  𝑅 ) )  =  (  ·𝑠  ‘ 𝑆 ) | 
						
							| 28 |  | fvex | ⊢ ( Base ‘ ( 𝐼  mPwSer  𝐻 ) )  ∈  V | 
						
							| 29 | 13 25 | ressvsca | ⊢ ( ( Base ‘ ( 𝐼  mPwSer  𝐻 ) )  ∈  V  →  (  ·𝑠  ‘ ( 𝐼  mPwSer  𝑅 ) )  =  (  ·𝑠  ‘ ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) ) ) | 
						
							| 30 | 28 29 | ax-mp | ⊢ (  ·𝑠  ‘ ( 𝐼  mPwSer  𝑅 ) )  =  (  ·𝑠  ‘ ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) ) | 
						
							| 31 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑆 ) | 
						
							| 32 | 7 31 | ressvsca | ⊢ ( 𝐵  ∈  V  →  (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑃 ) ) | 
						
							| 33 | 16 32 | ax-mp | ⊢ (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 34 | 27 30 33 | 3eqtr3i | ⊢ (  ·𝑠  ‘ ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 35 | 34 | oveqi | ⊢ ( 𝑋 (  ·𝑠  ‘ ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) ) 𝑌 )  =  ( 𝑋 (  ·𝑠  ‘ 𝑃 ) 𝑌 ) | 
						
							| 36 | 15 21 35 | 3eqtr3g | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 (  ·𝑠  ‘ 𝑈 ) 𝑌 )  =  ( 𝑋 (  ·𝑠  ‘ 𝑃 ) 𝑌 ) ) |