Step |
Hyp |
Ref |
Expression |
1 |
|
ressmulgnn.1 |
⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) |
2 |
|
ressmulgnn.2 |
⊢ 𝐴 ⊆ ( Base ‘ 𝐺 ) |
3 |
|
ressmulgnn.3 |
⊢ ∗ = ( .g ‘ 𝐺 ) |
4 |
|
ressmulgnn.4 |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
6 |
1 5
|
ressbas2 |
⊢ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
7 |
2 6
|
ax-mp |
⊢ 𝐴 = ( Base ‘ 𝐻 ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
9 |
|
eqid |
⊢ ( .g ‘ 𝐻 ) = ( .g ‘ 𝐻 ) |
10 |
|
fvex |
⊢ ( Base ‘ 𝐺 ) ∈ V |
11 |
10 2
|
ssexi |
⊢ 𝐴 ∈ V |
12 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
13 |
1 12
|
ressplusg |
⊢ ( 𝐴 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
14 |
11 13
|
ax-mp |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) |
15 |
|
seqeq2 |
⊢ ( ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) → seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ) |
16 |
14 15
|
ax-mp |
⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) |
17 |
7 8 9 16
|
mulgnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
18 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) |
19 |
2 18
|
sselid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
20 |
|
eqid |
⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) |
21 |
5 12 3 20
|
mulgnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑁 ∗ 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
22 |
19 21
|
syldan |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴 ) → ( 𝑁 ∗ 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
23 |
17 22
|
eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ∗ 𝑋 ) ) |