Step |
Hyp |
Ref |
Expression |
1 |
|
ressmulgnn.1 |
⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) |
2 |
|
ressmulgnn.2 |
⊢ 𝐴 ⊆ ( Base ‘ 𝐺 ) |
3 |
|
ressmulgnn.3 |
⊢ ∗ = ( .g ‘ 𝐺 ) |
4 |
|
ressmulgnn.4 |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
5 |
|
ressmulgnn0.4 |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) |
6 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
7 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 ∈ ℕ ) → 𝑋 ∈ 𝐴 ) |
8 |
1 2 3 4
|
ressmulgnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ∗ 𝑋 ) ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ∗ 𝑋 ) ) |
10 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → 𝑋 ∈ 𝐴 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
12 |
1 11
|
ressbas2 |
⊢ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
13 |
2 12
|
ax-mp |
⊢ 𝐴 = ( Base ‘ 𝐻 ) |
14 |
|
eqid |
⊢ ( .g ‘ 𝐻 ) = ( .g ‘ 𝐻 ) |
15 |
13 5 14
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐴 → ( 0 ( .g ‘ 𝐻 ) 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
16 |
10 15
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → ( 0 ( .g ‘ 𝐻 ) 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
17 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → 𝑁 = 0 ) |
18 |
17
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 0 ( .g ‘ 𝐻 ) 𝑋 ) ) |
19 |
2 10
|
sselid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
20 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
21 |
11 20 3
|
mulg0 |
⊢ ( 𝑋 ∈ ( Base ‘ 𝐺 ) → ( 0 ∗ 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
22 |
19 21
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → ( 0 ∗ 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
23 |
16 18 22
|
3eqtr4d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 0 ∗ 𝑋 ) ) |
24 |
17
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → ( 𝑁 ∗ 𝑋 ) = ( 0 ∗ 𝑋 ) ) |
25 |
23 24
|
eqtr4d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ∗ 𝑋 ) ) |
26 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
27 |
26
|
biimpi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
29 |
9 25 28
|
mpjaodan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ∗ 𝑋 ) ) |