| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressmulgnn.1 | ⊢ 𝐻  =  ( 𝐺  ↾s  𝐴 ) | 
						
							| 2 |  | ressmulgnn.2 | ⊢ 𝐴  ⊆  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | ressmulgnn.3 | ⊢  ∗   =  ( .g ‘ 𝐺 ) | 
						
							| 4 |  | ressmulgnn.4 | ⊢ 𝐼  =  ( invg ‘ 𝐺 ) | 
						
							| 5 |  | ressmulgnn0.4 | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐻 ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐴 )  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ ) | 
						
							| 7 |  | simplr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐴 )  ∧  𝑁  ∈  ℕ )  →  𝑋  ∈  𝐴 ) | 
						
							| 8 | 1 2 3 4 | ressmulgnn | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐴 )  →  ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 )  =  ( 𝑁  ∗  𝑋 ) ) | 
						
							| 9 | 6 7 8 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐴 )  ∧  𝑁  ∈  ℕ )  →  ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 )  =  ( 𝑁  ∗  𝑋 ) ) | 
						
							| 10 |  | simplr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐴 )  ∧  𝑁  =  0 )  →  𝑋  ∈  𝐴 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 12 | 1 11 | ressbas2 | ⊢ ( 𝐴  ⊆  ( Base ‘ 𝐺 )  →  𝐴  =  ( Base ‘ 𝐻 ) ) | 
						
							| 13 | 2 12 | ax-mp | ⊢ 𝐴  =  ( Base ‘ 𝐻 ) | 
						
							| 14 |  | eqid | ⊢ ( .g ‘ 𝐻 )  =  ( .g ‘ 𝐻 ) | 
						
							| 15 | 13 5 14 | mulg0 | ⊢ ( 𝑋  ∈  𝐴  →  ( 0 ( .g ‘ 𝐻 ) 𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 16 | 10 15 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐴 )  ∧  𝑁  =  0 )  →  ( 0 ( .g ‘ 𝐻 ) 𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐴 )  ∧  𝑁  =  0 )  →  𝑁  =  0 ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐴 )  ∧  𝑁  =  0 )  →  ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 )  =  ( 0 ( .g ‘ 𝐻 ) 𝑋 ) ) | 
						
							| 19 | 2 10 | sselid | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐴 )  ∧  𝑁  =  0 )  →  𝑋  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 20 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 21 | 11 20 3 | mulg0 | ⊢ ( 𝑋  ∈  ( Base ‘ 𝐺 )  →  ( 0  ∗  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 22 | 19 21 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐴 )  ∧  𝑁  =  0 )  →  ( 0  ∗  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 23 | 16 18 22 | 3eqtr4d | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐴 )  ∧  𝑁  =  0 )  →  ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 )  =  ( 0  ∗  𝑋 ) ) | 
						
							| 24 | 17 | oveq1d | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐴 )  ∧  𝑁  =  0 )  →  ( 𝑁  ∗  𝑋 )  =  ( 0  ∗  𝑋 ) ) | 
						
							| 25 | 23 24 | eqtr4d | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐴 )  ∧  𝑁  =  0 )  →  ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 )  =  ( 𝑁  ∗  𝑋 ) ) | 
						
							| 26 |  | elnn0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 27 | 26 | biimpi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐴 )  →  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 29 | 9 25 28 | mpjaodan | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐴 )  →  ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 )  =  ( 𝑁  ∗  𝑋 ) ) |