| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressmulgnnd.1 | ⊢ 𝐻  =  ( 𝐺  ↾s  𝐴 ) | 
						
							| 2 |  | ressmulgnnd.2 | ⊢ ( 𝜑  →  𝐴  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 3 |  | ressmulgnnd.3 | ⊢ ( 𝜑  →  𝑋  ∈  𝐴 ) | 
						
							| 4 |  | ressmulgnnd.4 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 5 | 4 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑁 ) | 
						
							| 6 | 4 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑁 )  →  𝑁  ∈  ℕ ) | 
						
							| 7 | 3 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑁 )  →  𝑋  ∈  𝐴 ) | 
						
							| 8 |  | eqid | ⊢ ( 𝐺  ↾s  𝐴 )  =  ( 𝐺  ↾s  𝐴 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 10 | 8 9 | ressbas2 | ⊢ ( 𝐴  ⊆  ( Base ‘ 𝐺 )  →  𝐴  =  ( Base ‘ ( 𝐺  ↾s  𝐴 ) ) ) | 
						
							| 11 | 2 10 | syl | ⊢ ( 𝜑  →  𝐴  =  ( Base ‘ ( 𝐺  ↾s  𝐴 ) ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑁 )  →  𝐴  =  ( Base ‘ ( 𝐺  ↾s  𝐴 ) ) ) | 
						
							| 13 |  | eqcom | ⊢ ( 𝐻  =  ( 𝐺  ↾s  𝐴 )  ↔  ( 𝐺  ↾s  𝐴 )  =  𝐻 ) | 
						
							| 14 | 1 13 | mpbi | ⊢ ( 𝐺  ↾s  𝐴 )  =  𝐻 | 
						
							| 15 | 14 | fveq2i | ⊢ ( Base ‘ ( 𝐺  ↾s  𝐴 ) )  =  ( Base ‘ 𝐻 ) | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝜑  ∧  0  <  𝑁 )  →  ( Base ‘ ( 𝐺  ↾s  𝐴 ) )  =  ( Base ‘ 𝐻 ) ) | 
						
							| 17 | 12 16 | eqtrd | ⊢ ( ( 𝜑  ∧  0  <  𝑁 )  →  𝐴  =  ( Base ‘ 𝐻 ) ) | 
						
							| 18 | 7 17 | eleqtrd | ⊢ ( ( 𝜑  ∧  0  <  𝑁 )  →  𝑋  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 20 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 21 |  | eqid | ⊢ ( .g ‘ 𝐻 )  =  ( .g ‘ 𝐻 ) | 
						
							| 22 |  | eqid | ⊢ seq 1 ( ( +g ‘ 𝐻 ) ,  ( ℕ  ×  { 𝑋 } ) )  =  seq 1 ( ( +g ‘ 𝐻 ) ,  ( ℕ  ×  { 𝑋 } ) ) | 
						
							| 23 | 19 20 21 22 | mulgnn | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  ( Base ‘ 𝐻 ) )  →  ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 )  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑁 ) ) | 
						
							| 24 | 6 18 23 | syl2anc | ⊢ ( ( 𝜑  ∧  0  <  𝑁 )  →  ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 )  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑁 ) ) | 
						
							| 25 |  | fvexd | ⊢ ( 𝜑  →  ( Base ‘ 𝐺 )  ∈  V ) | 
						
							| 26 | 25 2 | ssexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 27 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 28 | 1 27 | ressplusg | ⊢ ( 𝐴  ∈  V  →  ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐻 ) ) | 
						
							| 29 | 26 28 | syl | ⊢ ( 𝜑  →  ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐻 ) ) | 
						
							| 30 | 29 | eqcomd | ⊢ ( 𝜑  →  ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐺 ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑁 )  →  ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐺 ) ) | 
						
							| 32 | 31 | seqeq2d | ⊢ ( ( 𝜑  ∧  0  <  𝑁 )  →  seq 1 ( ( +g ‘ 𝐻 ) ,  ( ℕ  ×  { 𝑋 } ) )  =  seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) ) ) | 
						
							| 33 | 32 | fveq1d | ⊢ ( ( 𝜑  ∧  0  <  𝑁 )  →  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑁 )  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑁 ) ) | 
						
							| 34 | 2 3 | sseldd | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑁 )  →  𝑋  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 36 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 37 |  | eqid | ⊢ seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) )  =  seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) ) | 
						
							| 38 | 9 27 36 37 | mulgnn | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 )  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑁 ) ) | 
						
							| 39 | 6 35 38 | syl2anc | ⊢ ( ( 𝜑  ∧  0  <  𝑁 )  →  ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 )  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑁 ) ) | 
						
							| 40 | 39 | eqcomd | ⊢ ( ( 𝜑  ∧  0  <  𝑁 )  →  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑁 )  =  ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) | 
						
							| 41 | 24 33 40 | 3eqtrd | ⊢ ( ( 𝜑  ∧  0  <  𝑁 )  →  ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 )  =  ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) | 
						
							| 42 | 41 | ex | ⊢ ( 𝜑  →  ( 0  <  𝑁  →  ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 )  =  ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) ) | 
						
							| 43 | 5 42 | mpd | ⊢ ( 𝜑  →  ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 )  =  ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) |