Step |
Hyp |
Ref |
Expression |
1 |
|
ressmulgnnd.1 |
⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) |
2 |
|
ressmulgnnd.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
3 |
|
ressmulgnnd.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
4 |
|
ressmulgnnd.4 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
5 |
4
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑁 ) |
6 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑁 ∈ ℕ ) |
7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑋 ∈ 𝐴 ) |
8 |
|
eqid |
⊢ ( 𝐺 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
10 |
8 9
|
ressbas2 |
⊢ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) → 𝐴 = ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → 𝐴 = ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝐴 = ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) ) |
13 |
|
eqcom |
⊢ ( 𝐻 = ( 𝐺 ↾s 𝐴 ) ↔ ( 𝐺 ↾s 𝐴 ) = 𝐻 ) |
14 |
1 13
|
mpbi |
⊢ ( 𝐺 ↾s 𝐴 ) = 𝐻 |
15 |
14
|
fveq2i |
⊢ ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) = ( Base ‘ 𝐻 ) |
16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) = ( Base ‘ 𝐻 ) ) |
17 |
12 16
|
eqtrd |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
18 |
7 17
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
20 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
21 |
|
eqid |
⊢ ( .g ‘ 𝐻 ) = ( .g ‘ 𝐻 ) |
22 |
|
eqid |
⊢ seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) |
23 |
19 20 21 22
|
mulgnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
24 |
6 18 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
25 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) ∈ V ) |
26 |
25 2
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
27 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
28 |
1 27
|
ressplusg |
⊢ ( 𝐴 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
29 |
26 28
|
syl |
⊢ ( 𝜑 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
30 |
29
|
eqcomd |
⊢ ( 𝜑 → ( +g ‘ 𝐻 ) = ( +g ‘ 𝐺 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( +g ‘ 𝐻 ) = ( +g ‘ 𝐺 ) ) |
32 |
31
|
seqeq2d |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ) |
33 |
32
|
fveq1d |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
34 |
2 3
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
36 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
37 |
|
eqid |
⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) |
38 |
9 27 36 37
|
mulgnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
39 |
6 35 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
40 |
39
|
eqcomd |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) |
41 |
24 33 40
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) |
42 |
41
|
ex |
⊢ ( 𝜑 → ( 0 < 𝑁 → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) ) |
43 |
5 42
|
mpd |
⊢ ( 𝜑 → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) |