Description: .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ressmulr.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
ressmulr.2 | ⊢ · = ( .r ‘ 𝑅 ) | ||
Assertion | ressmulr | ⊢ ( 𝐴 ∈ 𝑉 → · = ( .r ‘ 𝑆 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressmulr.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
2 | ressmulr.2 | ⊢ · = ( .r ‘ 𝑅 ) | |
3 | mulrid | ⊢ .r = Slot ( .r ‘ ndx ) | |
4 | basendxnmulrndx | ⊢ ( Base ‘ ndx ) ≠ ( .r ‘ ndx ) | |
5 | 4 | necomi | ⊢ ( .r ‘ ndx ) ≠ ( Base ‘ ndx ) |
6 | 1 2 3 5 | resseqnbas | ⊢ ( 𝐴 ∈ 𝑉 → · = ( .r ‘ 𝑆 ) ) |