Metamath Proof Explorer


Theorem ressn2

Description: A class ' R ' restricted to the singleton of the class ' A ' is the ordered pair class abstraction of the class ' A ' and the sets in relation ' R ' to ' A ' (and not in relation to the singleton ' { A } ' ). (Contributed by Peter Mazsa, 16-Jun-2024)

Ref Expression
Assertion ressn2 ( 𝑅 ↾ { 𝐴 } ) = { ⟨ 𝑎 , 𝑢 ⟩ ∣ ( 𝑎 = 𝐴𝐴 𝑅 𝑢 ) }

Proof

Step Hyp Ref Expression
1 dfres2 ( 𝑅 ↾ { 𝐴 } ) = { ⟨ 𝑎 , 𝑢 ⟩ ∣ ( 𝑎 ∈ { 𝐴 } ∧ 𝑎 𝑅 𝑢 ) }
2 velsn ( 𝑎 ∈ { 𝐴 } ↔ 𝑎 = 𝐴 )
3 2 anbi1i ( ( 𝑎 ∈ { 𝐴 } ∧ 𝑎 𝑅 𝑢 ) ↔ ( 𝑎 = 𝐴𝑎 𝑅 𝑢 ) )
4 eqbrb ( ( 𝑎 = 𝐴𝑎 𝑅 𝑢 ) ↔ ( 𝑎 = 𝐴𝐴 𝑅 𝑢 ) )
5 3 4 bitri ( ( 𝑎 ∈ { 𝐴 } ∧ 𝑎 𝑅 𝑢 ) ↔ ( 𝑎 = 𝐴𝐴 𝑅 𝑢 ) )
6 5 opabbii { ⟨ 𝑎 , 𝑢 ⟩ ∣ ( 𝑎 ∈ { 𝐴 } ∧ 𝑎 𝑅 𝑢 ) } = { ⟨ 𝑎 , 𝑢 ⟩ ∣ ( 𝑎 = 𝐴𝐴 𝑅 𝑢 ) }
7 1 6 eqtri ( 𝑅 ↾ { 𝐴 } ) = { ⟨ 𝑎 , 𝑢 ⟩ ∣ ( 𝑎 = 𝐴𝐴 𝑅 𝑢 ) }