Description: A class ' R ' restricted to the singleton of the class ' A ' is the ordered pair class abstraction of the class ' A ' and the sets in relation ' R ' to ' A ' (and not in relation to the singleton ' { A } ' ). (Contributed by Peter Mazsa, 16-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ressn2 | ⊢ ( 𝑅 ↾ { 𝐴 } ) = { 〈 𝑎 , 𝑢 〉 ∣ ( 𝑎 = 𝐴 ∧ 𝐴 𝑅 𝑢 ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfres2 | ⊢ ( 𝑅 ↾ { 𝐴 } ) = { 〈 𝑎 , 𝑢 〉 ∣ ( 𝑎 ∈ { 𝐴 } ∧ 𝑎 𝑅 𝑢 ) } | |
2 | velsn | ⊢ ( 𝑎 ∈ { 𝐴 } ↔ 𝑎 = 𝐴 ) | |
3 | 2 | anbi1i | ⊢ ( ( 𝑎 ∈ { 𝐴 } ∧ 𝑎 𝑅 𝑢 ) ↔ ( 𝑎 = 𝐴 ∧ 𝑎 𝑅 𝑢 ) ) |
4 | eqbrb | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑎 𝑅 𝑢 ) ↔ ( 𝑎 = 𝐴 ∧ 𝐴 𝑅 𝑢 ) ) | |
5 | 3 4 | bitri | ⊢ ( ( 𝑎 ∈ { 𝐴 } ∧ 𝑎 𝑅 𝑢 ) ↔ ( 𝑎 = 𝐴 ∧ 𝐴 𝑅 𝑢 ) ) |
6 | 5 | opabbii | ⊢ { 〈 𝑎 , 𝑢 〉 ∣ ( 𝑎 ∈ { 𝐴 } ∧ 𝑎 𝑅 𝑢 ) } = { 〈 𝑎 , 𝑢 〉 ∣ ( 𝑎 = 𝐴 ∧ 𝐴 𝑅 𝑢 ) } |
7 | 1 6 | eqtri | ⊢ ( 𝑅 ↾ { 𝐴 } ) = { 〈 𝑎 , 𝑢 〉 ∣ ( 𝑎 = 𝐴 ∧ 𝐴 𝑅 𝑢 ) } |