| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressplusf.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ressplusf.2 | ⊢ 𝐻  =  ( 𝐺  ↾s  𝐴 ) | 
						
							| 3 |  | ressplusf.3 | ⊢  ⨣   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | ressplusf.4 | ⊢  ⨣   Fn  ( 𝐵  ×  𝐵 ) | 
						
							| 5 |  | ressplusf.5 | ⊢ 𝐴  ⊆  𝐵 | 
						
							| 6 |  | resmpo | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐴  ⊆  𝐵 )  →  ( ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ⨣  𝑦 ) )  ↾  ( 𝐴  ×  𝐴 ) )  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐴  ↦  ( 𝑥  ⨣  𝑦 ) ) ) | 
						
							| 7 | 5 5 6 | mp2an | ⊢ ( ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ⨣  𝑦 ) )  ↾  ( 𝐴  ×  𝐴 ) )  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐴  ↦  ( 𝑥  ⨣  𝑦 ) ) | 
						
							| 8 |  | fnov | ⊢ (  ⨣   Fn  ( 𝐵  ×  𝐵 )  ↔   ⨣   =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ⨣  𝑦 ) ) ) | 
						
							| 9 | 4 8 | mpbi | ⊢  ⨣   =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ⨣  𝑦 ) ) | 
						
							| 10 | 9 | reseq1i | ⊢ (  ⨣   ↾  ( 𝐴  ×  𝐴 ) )  =  ( ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ⨣  𝑦 ) )  ↾  ( 𝐴  ×  𝐴 ) ) | 
						
							| 11 | 2 1 | ressbas2 | ⊢ ( 𝐴  ⊆  𝐵  →  𝐴  =  ( Base ‘ 𝐻 ) ) | 
						
							| 12 | 5 11 | ax-mp | ⊢ 𝐴  =  ( Base ‘ 𝐻 ) | 
						
							| 13 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 14 | 13 5 | ssexi | ⊢ 𝐴  ∈  V | 
						
							| 15 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 16 | 2 15 | ressplusg | ⊢ ( 𝐴  ∈  V  →  ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐻 ) ) | 
						
							| 17 | 14 16 | ax-mp | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐻 ) | 
						
							| 18 | 3 17 | eqtri | ⊢  ⨣   =  ( +g ‘ 𝐻 ) | 
						
							| 19 |  | eqid | ⊢ ( +𝑓 ‘ 𝐻 )  =  ( +𝑓 ‘ 𝐻 ) | 
						
							| 20 | 12 18 19 | plusffval | ⊢ ( +𝑓 ‘ 𝐻 )  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐴  ↦  ( 𝑥  ⨣  𝑦 ) ) | 
						
							| 21 | 7 10 20 | 3eqtr4ri | ⊢ ( +𝑓 ‘ 𝐻 )  =  (  ⨣   ↾  ( 𝐴  ×  𝐴 ) ) |