Metamath Proof Explorer


Theorem ressplusf

Description: The group operation function +f of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017)

Ref Expression
Hypotheses ressplusf.1 𝐵 = ( Base ‘ 𝐺 )
ressplusf.2 𝐻 = ( 𝐺s 𝐴 )
ressplusf.3 = ( +g𝐺 )
ressplusf.4 Fn ( 𝐵 × 𝐵 )
ressplusf.5 𝐴𝐵
Assertion ressplusf ( +𝑓𝐻 ) = ( ↾ ( 𝐴 × 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ressplusf.1 𝐵 = ( Base ‘ 𝐺 )
2 ressplusf.2 𝐻 = ( 𝐺s 𝐴 )
3 ressplusf.3 = ( +g𝐺 )
4 ressplusf.4 Fn ( 𝐵 × 𝐵 )
5 ressplusf.5 𝐴𝐵
6 resmpo ( ( 𝐴𝐵𝐴𝐵 ) → ( ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 𝑦 ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( 𝑥𝐴 , 𝑦𝐴 ↦ ( 𝑥 𝑦 ) ) )
7 5 5 6 mp2an ( ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 𝑦 ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( 𝑥𝐴 , 𝑦𝐴 ↦ ( 𝑥 𝑦 ) )
8 fnov ( Fn ( 𝐵 × 𝐵 ) ↔ = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 𝑦 ) ) )
9 4 8 mpbi = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 𝑦 ) )
10 9 reseq1i ( ↾ ( 𝐴 × 𝐴 ) ) = ( ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 𝑦 ) ) ↾ ( 𝐴 × 𝐴 ) )
11 2 1 ressbas2 ( 𝐴𝐵𝐴 = ( Base ‘ 𝐻 ) )
12 5 11 ax-mp 𝐴 = ( Base ‘ 𝐻 )
13 1 fvexi 𝐵 ∈ V
14 13 5 ssexi 𝐴 ∈ V
15 eqid ( +g𝐺 ) = ( +g𝐺 )
16 2 15 ressplusg ( 𝐴 ∈ V → ( +g𝐺 ) = ( +g𝐻 ) )
17 14 16 ax-mp ( +g𝐺 ) = ( +g𝐻 )
18 3 17 eqtri = ( +g𝐻 )
19 eqid ( +𝑓𝐻 ) = ( +𝑓𝐻 )
20 12 18 19 plusffval ( +𝑓𝐻 ) = ( 𝑥𝐴 , 𝑦𝐴 ↦ ( 𝑥 𝑦 ) )
21 7 10 20 3eqtr4ri ( +𝑓𝐻 ) = ( ↾ ( 𝐴 × 𝐴 ) )