Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressplusg.1 | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| ressplusg.2 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | ressplusg | ⊢ ( 𝐴 ∈ 𝑉 → + = ( +g ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressplusg.1 | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| 2 | ressplusg.2 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | plusgid | ⊢ +g = Slot ( +g ‘ ndx ) | |
| 4 | basendxnplusgndx | ⊢ ( Base ‘ ndx ) ≠ ( +g ‘ ndx ) | |
| 5 | 4 | necomi | ⊢ ( +g ‘ ndx ) ≠ ( Base ‘ ndx ) |
| 6 | 1 2 3 5 | resseqnbas | ⊢ ( 𝐴 ∈ 𝑉 → + = ( +g ‘ 𝐻 ) ) |