Metamath Proof Explorer


Theorem ressplusg

Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypotheses ressplusg.1 𝐻 = ( 𝐺s 𝐴 )
ressplusg.2 + = ( +g𝐺 )
Assertion ressplusg ( 𝐴𝑉+ = ( +g𝐻 ) )

Proof

Step Hyp Ref Expression
1 ressplusg.1 𝐻 = ( 𝐺s 𝐴 )
2 ressplusg.2 + = ( +g𝐺 )
3 plusgid +g = Slot ( +g ‘ ndx )
4 basendxnplusgndx ( Base ‘ ndx ) ≠ ( +g ‘ ndx )
5 4 necomi ( +g ‘ ndx ) ≠ ( Base ‘ ndx )
6 1 2 3 5 resseqnbas ( 𝐴𝑉+ = ( +g𝐻 ) )