Step |
Hyp |
Ref |
Expression |
1 |
|
ressply.1 |
⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ressply.2 |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
3 |
|
ressply.3 |
⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) |
4 |
|
ressply.4 |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
5 |
|
ressply.5 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
6 |
|
ressply10g.6 |
⊢ 𝑍 = ( 0g ‘ 𝑆 ) |
7 |
|
eqid |
⊢ ( algSc ‘ 𝑆 ) = ( algSc ‘ 𝑆 ) |
8 |
|
eqid |
⊢ ( algSc ‘ 𝑈 ) = ( algSc ‘ 𝑈 ) |
9 |
1 7 2 3 5 8
|
subrg1ascl |
⊢ ( 𝜑 → ( algSc ‘ 𝑈 ) = ( ( algSc ‘ 𝑆 ) ↾ 𝑇 ) ) |
10 |
9
|
fveq1d |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑈 ) ‘ ( 0g ‘ 𝐻 ) ) = ( ( ( algSc ‘ 𝑆 ) ↾ 𝑇 ) ‘ ( 0g ‘ 𝐻 ) ) ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
13 |
2
|
subrgring |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐻 ∈ Ring ) |
14 |
5 13
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ Ring ) |
15 |
3 8 11 12 14
|
ply1ascl0 |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑈 ) ‘ ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝑈 ) ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
17 |
2 16
|
subrg0 |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐻 ) ) |
18 |
5 17
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐻 ) ) |
19 |
|
subrgsubg |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 ∈ ( SubGrp ‘ 𝑅 ) ) |
20 |
16
|
subg0cl |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝑇 ) |
21 |
5 19 20
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ 𝑇 ) |
22 |
18 21
|
eqeltrrd |
⊢ ( 𝜑 → ( 0g ‘ 𝐻 ) ∈ 𝑇 ) |
23 |
22
|
fvresd |
⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑆 ) ↾ 𝑇 ) ‘ ( 0g ‘ 𝐻 ) ) = ( ( algSc ‘ 𝑆 ) ‘ ( 0g ‘ 𝐻 ) ) ) |
24 |
10 15 23
|
3eqtr3d |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) = ( ( algSc ‘ 𝑆 ) ‘ ( 0g ‘ 𝐻 ) ) ) |
25 |
18
|
fveq2d |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑆 ) ‘ ( 0g ‘ 𝑅 ) ) = ( ( algSc ‘ 𝑆 ) ‘ ( 0g ‘ 𝐻 ) ) ) |
26 |
|
subrgrcl |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
27 |
5 26
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
28 |
1 7 16 6 27
|
ply1ascl0 |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑆 ) ‘ ( 0g ‘ 𝑅 ) ) = 𝑍 ) |
29 |
24 25 28
|
3eqtr2rd |
⊢ ( 𝜑 → 𝑍 = ( 0g ‘ 𝑈 ) ) |