| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressply1.s | ⊢ 𝑆  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | ressply1.h | ⊢ 𝐻  =  ( 𝑅  ↾s  𝑇 ) | 
						
							| 3 |  | ressply1.u | ⊢ 𝑈  =  ( Poly1 ‘ 𝐻 ) | 
						
							| 4 |  | ressply1.b | ⊢ 𝐵  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | ressply1.2 | ⊢ ( 𝜑  →  𝑇  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 6 |  | ressply1.p | ⊢ 𝑃  =  ( 𝑆  ↾s  𝐵 ) | 
						
							| 7 |  | eqid | ⊢ ( 1o  mPoly  𝑅 )  =  ( 1o  mPoly  𝑅 ) | 
						
							| 8 |  | eqid | ⊢ ( 1o  mPoly  𝐻 )  =  ( 1o  mPoly  𝐻 ) | 
						
							| 9 | 3 4 | ply1bas | ⊢ 𝐵  =  ( Base ‘ ( 1o  mPoly  𝐻 ) ) | 
						
							| 10 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  1o  ∈  On ) | 
						
							| 12 |  | eqid | ⊢ ( ( 1o  mPoly  𝑅 )  ↾s  𝐵 )  =  ( ( 1o  mPoly  𝑅 )  ↾s  𝐵 ) | 
						
							| 13 | 7 2 8 9 11 5 12 | ressmpladd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 ( +g ‘ ( 1o  mPoly  𝐻 ) ) 𝑌 )  =  ( 𝑋 ( +g ‘ ( ( 1o  mPoly  𝑅 )  ↾s  𝐵 ) ) 𝑌 ) ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑈 ) | 
						
							| 15 | 3 8 14 | ply1plusg | ⊢ ( +g ‘ 𝑈 )  =  ( +g ‘ ( 1o  mPoly  𝐻 ) ) | 
						
							| 16 | 15 | oveqi | ⊢ ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 )  =  ( 𝑋 ( +g ‘ ( 1o  mPoly  𝐻 ) ) 𝑌 ) | 
						
							| 17 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 18 | 1 7 17 | ply1plusg | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 19 | 4 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 20 | 6 17 | ressplusg | ⊢ ( 𝐵  ∈  V  →  ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑃 ) ) | 
						
							| 21 | 19 20 | ax-mp | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑃 ) | 
						
							| 22 |  | eqid | ⊢ ( +g ‘ ( 1o  mPoly  𝑅 ) )  =  ( +g ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 23 | 12 22 | ressplusg | ⊢ ( 𝐵  ∈  V  →  ( +g ‘ ( 1o  mPoly  𝑅 ) )  =  ( +g ‘ ( ( 1o  mPoly  𝑅 )  ↾s  𝐵 ) ) ) | 
						
							| 24 | 19 23 | ax-mp | ⊢ ( +g ‘ ( 1o  mPoly  𝑅 ) )  =  ( +g ‘ ( ( 1o  mPoly  𝑅 )  ↾s  𝐵 ) ) | 
						
							| 25 | 18 21 24 | 3eqtr3i | ⊢ ( +g ‘ 𝑃 )  =  ( +g ‘ ( ( 1o  mPoly  𝑅 )  ↾s  𝐵 ) ) | 
						
							| 26 | 25 | oveqi | ⊢ ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 )  =  ( 𝑋 ( +g ‘ ( ( 1o  mPoly  𝑅 )  ↾s  𝐵 ) ) 𝑌 ) | 
						
							| 27 | 13 16 26 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 )  =  ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 ) ) |