| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressply1.s | ⊢ 𝑆  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | ressply1.h | ⊢ 𝐻  =  ( 𝑅  ↾s  𝑇 ) | 
						
							| 3 |  | ressply1.u | ⊢ 𝑈  =  ( Poly1 ‘ 𝐻 ) | 
						
							| 4 |  | ressply1.b | ⊢ 𝐵  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | ressply1.2 | ⊢ ( 𝜑  →  𝑇  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 6 |  | ressply1.p | ⊢ 𝑃  =  ( 𝑆  ↾s  𝐵 ) | 
						
							| 7 |  | eqid | ⊢ ( PwSer1 ‘ 𝐻 )  =  ( PwSer1 ‘ 𝐻 ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ ( PwSer1 ‘ 𝐻 ) )  =  ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 10 | 1 2 3 4 5 7 8 9 | ressply1bas2 | ⊢ ( 𝜑  →  𝐵  =  ( ( Base ‘ ( PwSer1 ‘ 𝐻 ) )  ∩  ( Base ‘ 𝑆 ) ) ) | 
						
							| 11 |  | inss2 | ⊢ ( ( Base ‘ ( PwSer1 ‘ 𝐻 ) )  ∩  ( Base ‘ 𝑆 ) )  ⊆  ( Base ‘ 𝑆 ) | 
						
							| 12 | 10 11 | eqsstrdi | ⊢ ( 𝜑  →  𝐵  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 13 | 6 9 | ressbas2 | ⊢ ( 𝐵  ⊆  ( Base ‘ 𝑆 )  →  𝐵  =  ( Base ‘ 𝑃 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑃 ) ) |