Metamath Proof Explorer


Theorem ressply1bas2

Description: The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses ressply1.s 𝑆 = ( Poly1𝑅 )
ressply1.h 𝐻 = ( 𝑅s 𝑇 )
ressply1.u 𝑈 = ( Poly1𝐻 )
ressply1.b 𝐵 = ( Base ‘ 𝑈 )
ressply1.2 ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
ressply1bas2.w 𝑊 = ( PwSer1𝐻 )
ressply1bas2.c 𝐶 = ( Base ‘ 𝑊 )
ressply1bas2.k 𝐾 = ( Base ‘ 𝑆 )
Assertion ressply1bas2 ( 𝜑𝐵 = ( 𝐶𝐾 ) )

Proof

Step Hyp Ref Expression
1 ressply1.s 𝑆 = ( Poly1𝑅 )
2 ressply1.h 𝐻 = ( 𝑅s 𝑇 )
3 ressply1.u 𝑈 = ( Poly1𝐻 )
4 ressply1.b 𝐵 = ( Base ‘ 𝑈 )
5 ressply1.2 ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
6 ressply1bas2.w 𝑊 = ( PwSer1𝐻 )
7 ressply1bas2.c 𝐶 = ( Base ‘ 𝑊 )
8 ressply1bas2.k 𝐾 = ( Base ‘ 𝑆 )
9 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
10 eqid ( 1o mPoly 𝐻 ) = ( 1o mPoly 𝐻 )
11 3 6 4 ply1bas 𝐵 = ( Base ‘ ( 1o mPoly 𝐻 ) )
12 1on 1o ∈ On
13 12 a1i ( 𝜑 → 1o ∈ On )
14 eqid ( 1o mPwSer 𝐻 ) = ( 1o mPwSer 𝐻 )
15 6 7 14 psr1bas2 𝐶 = ( Base ‘ ( 1o mPwSer 𝐻 ) )
16 eqid ( PwSer1𝑅 ) = ( PwSer1𝑅 )
17 1 16 8 ply1bas 𝐾 = ( Base ‘ ( 1o mPoly 𝑅 ) )
18 9 2 10 11 13 5 14 15 17 ressmplbas2 ( 𝜑𝐵 = ( 𝐶𝐾 ) )