| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressply1.s | ⊢ 𝑆  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | ressply1.h | ⊢ 𝐻  =  ( 𝑅  ↾s  𝑇 ) | 
						
							| 3 |  | ressply1.u | ⊢ 𝑈  =  ( Poly1 ‘ 𝐻 ) | 
						
							| 4 |  | ressply1.b | ⊢ 𝐵  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | ressply1.2 | ⊢ ( 𝜑  →  𝑇  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 6 |  | ressply1bas2.w | ⊢ 𝑊  =  ( PwSer1 ‘ 𝐻 ) | 
						
							| 7 |  | ressply1bas2.c | ⊢ 𝐶  =  ( Base ‘ 𝑊 ) | 
						
							| 8 |  | ressply1bas2.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 9 |  | eqid | ⊢ ( 1o  mPoly  𝑅 )  =  ( 1o  mPoly  𝑅 ) | 
						
							| 10 |  | eqid | ⊢ ( 1o  mPoly  𝐻 )  =  ( 1o  mPoly  𝐻 ) | 
						
							| 11 | 3 4 | ply1bas | ⊢ 𝐵  =  ( Base ‘ ( 1o  mPoly  𝐻 ) ) | 
						
							| 12 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  1o  ∈  On ) | 
						
							| 14 |  | eqid | ⊢ ( 1o  mPwSer  𝐻 )  =  ( 1o  mPwSer  𝐻 ) | 
						
							| 15 | 6 7 14 | psr1bas2 | ⊢ 𝐶  =  ( Base ‘ ( 1o  mPwSer  𝐻 ) ) | 
						
							| 16 | 1 8 | ply1bas | ⊢ 𝐾  =  ( Base ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 17 | 9 2 10 11 13 5 14 15 16 | ressmplbas2 | ⊢ ( 𝜑  →  𝐵  =  ( 𝐶  ∩  𝐾 ) ) |