Step |
Hyp |
Ref |
Expression |
1 |
|
ressply1.s |
⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ressply1.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
3 |
|
ressply1.u |
⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) |
4 |
|
ressply1.b |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
5 |
|
ressply1.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
6 |
|
ressply1bas2.w |
⊢ 𝑊 = ( PwSer1 ‘ 𝐻 ) |
7 |
|
ressply1bas2.c |
⊢ 𝐶 = ( Base ‘ 𝑊 ) |
8 |
|
ressply1bas2.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
9 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
10 |
|
eqid |
⊢ ( 1o mPoly 𝐻 ) = ( 1o mPoly 𝐻 ) |
11 |
3 6 4
|
ply1bas |
⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝐻 ) ) |
12 |
|
1on |
⊢ 1o ∈ On |
13 |
12
|
a1i |
⊢ ( 𝜑 → 1o ∈ On ) |
14 |
|
eqid |
⊢ ( 1o mPwSer 𝐻 ) = ( 1o mPwSer 𝐻 ) |
15 |
6 7 14
|
psr1bas2 |
⊢ 𝐶 = ( Base ‘ ( 1o mPwSer 𝐻 ) ) |
16 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
17 |
1 16 8
|
ply1bas |
⊢ 𝐾 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
18 |
9 2 10 11 13 5 14 15 17
|
ressmplbas2 |
⊢ ( 𝜑 → 𝐵 = ( 𝐶 ∩ 𝐾 ) ) |