Step |
Hyp |
Ref |
Expression |
1 |
|
ressply1evl2.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
2 |
|
ressply1evl2.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
3 |
|
ressply1evl2.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
4 |
|
ressply1evl2.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
5 |
|
ressply1evl2.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
6 |
|
ressply1evl.e |
⊢ 𝐸 = ( eval1 ‘ 𝑆 ) |
7 |
|
ressply1evl.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
8 |
|
ressply1evl.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
9 |
6 2
|
evl1fval1 |
⊢ 𝐸 = ( 𝑆 evalSub1 𝐾 ) |
10 |
|
eqid |
⊢ ( Poly1 ‘ ( 𝑆 ↾s 𝐾 ) ) = ( Poly1 ‘ ( 𝑆 ↾s 𝐾 ) ) |
11 |
|
eqid |
⊢ ( 𝑆 ↾s 𝐾 ) = ( 𝑆 ↾s 𝐾 ) |
12 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐾 ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐾 ) ) ) |
13 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → 𝑆 ∈ CRing ) |
14 |
7
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
15 |
2
|
subrgid |
⊢ ( 𝑆 ∈ Ring → 𝐾 ∈ ( SubRing ‘ 𝑆 ) ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( SubRing ‘ 𝑆 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → 𝐾 ∈ ( SubRing ‘ 𝑆 ) ) |
18 |
|
eqid |
⊢ ( Poly1 ‘ 𝑆 ) = ( Poly1 ‘ 𝑆 ) |
19 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑈 ) = ( PwSer1 ‘ 𝑈 ) |
20 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) |
21 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) = ( Base ‘ ( Poly1 ‘ 𝑆 ) ) |
22 |
18 4 3 5 8 19 20 21
|
ressply1bas2 |
⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) ) |
23 |
|
inss2 |
⊢ ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) ⊆ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) |
24 |
22 23
|
eqsstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
25 |
2
|
ressid |
⊢ ( 𝑆 ∈ CRing → ( 𝑆 ↾s 𝐾 ) = 𝑆 ) |
26 |
7 25
|
syl |
⊢ ( 𝜑 → ( 𝑆 ↾s 𝐾 ) = 𝑆 ) |
27 |
26
|
fveq2d |
⊢ ( 𝜑 → ( Poly1 ‘ ( 𝑆 ↾s 𝐾 ) ) = ( Poly1 ‘ 𝑆 ) ) |
28 |
27
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐾 ) ) ) = ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
29 |
24 28
|
sseqtrrd |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐾 ) ) ) ) |
30 |
29
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → 𝑚 ∈ ( Base ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐾 ) ) ) ) |
31 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
32 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑆 ) ) = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
33 |
|
eqid |
⊢ ( coe1 ‘ 𝑚 ) = ( coe1 ‘ 𝑚 ) |
34 |
9 2 10 11 12 13 17 30 31 32 33
|
evls1fpws |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → ( 𝐸 ‘ 𝑚 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑆 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑚 ) ‘ 𝑘 ) ( .r ‘ 𝑆 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑥 ) ) ) ) ) ) |
35 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → 𝑚 ∈ 𝐵 ) |
37 |
1 2 3 4 5 13 35 36 31 32 33
|
evls1fpws |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → ( 𝑄 ‘ 𝑚 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑆 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑚 ) ‘ 𝑘 ) ( .r ‘ 𝑆 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑥 ) ) ) ) ) ) |
38 |
34 37
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → ( 𝐸 ‘ 𝑚 ) = ( 𝑄 ‘ 𝑚 ) ) |
39 |
38
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝐵 ( 𝐸 ‘ 𝑚 ) = ( 𝑄 ‘ 𝑚 ) ) |
40 |
|
eqid |
⊢ ( 𝑆 ↑s 𝐾 ) = ( 𝑆 ↑s 𝐾 ) |
41 |
6 18 40 2
|
evl1rhm |
⊢ ( 𝑆 ∈ CRing → 𝐸 ∈ ( ( Poly1 ‘ 𝑆 ) RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
42 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) = ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) |
43 |
21 42
|
rhmf |
⊢ ( 𝐸 ∈ ( ( Poly1 ‘ 𝑆 ) RingHom ( 𝑆 ↑s 𝐾 ) ) → 𝐸 : ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
44 |
7 41 43
|
3syl |
⊢ ( 𝜑 → 𝐸 : ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
45 |
44
|
ffnd |
⊢ ( 𝜑 → 𝐸 Fn ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
46 |
1 2 40 4 3
|
evls1rhm |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
47 |
7 8 46
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
48 |
5 42
|
rhmf |
⊢ ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
49 |
47 48
|
syl |
⊢ ( 𝜑 → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
50 |
49
|
ffnd |
⊢ ( 𝜑 → 𝑄 Fn 𝐵 ) |
51 |
|
fvreseq1 |
⊢ ( ( ( 𝐸 Fn ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ∧ 𝑄 Fn 𝐵 ) ∧ 𝐵 ⊆ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) → ( ( 𝐸 ↾ 𝐵 ) = 𝑄 ↔ ∀ 𝑚 ∈ 𝐵 ( 𝐸 ‘ 𝑚 ) = ( 𝑄 ‘ 𝑚 ) ) ) |
52 |
45 50 24 51
|
syl21anc |
⊢ ( 𝜑 → ( ( 𝐸 ↾ 𝐵 ) = 𝑄 ↔ ∀ 𝑚 ∈ 𝐵 ( 𝐸 ‘ 𝑚 ) = ( 𝑄 ‘ 𝑚 ) ) ) |
53 |
39 52
|
mpbird |
⊢ ( 𝜑 → ( 𝐸 ↾ 𝐵 ) = 𝑄 ) |
54 |
53
|
eqcomd |
⊢ ( 𝜑 → 𝑄 = ( 𝐸 ↾ 𝐵 ) ) |