Metamath Proof Explorer


Theorem ressply1invg

Description: An element of a restricted polynomial algebra has the same group inverse. (Contributed by Thierry Arnoux, 30-Jan-2025)

Ref Expression
Hypotheses ressply.1 𝑆 = ( Poly1𝑅 )
ressply.2 𝐻 = ( 𝑅s 𝑇 )
ressply.3 𝑈 = ( Poly1𝐻 )
ressply.4 𝐵 = ( Base ‘ 𝑈 )
ressply.5 ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
ressply1.1 𝑃 = ( 𝑆s 𝐵 )
ressply1invg.1 ( 𝜑𝑋𝐵 )
Assertion ressply1invg ( 𝜑 → ( ( invg𝑈 ) ‘ 𝑋 ) = ( ( invg𝑃 ) ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 ressply.1 𝑆 = ( Poly1𝑅 )
2 ressply.2 𝐻 = ( 𝑅s 𝑇 )
3 ressply.3 𝑈 = ( Poly1𝐻 )
4 ressply.4 𝐵 = ( Base ‘ 𝑈 )
5 ressply.5 ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
6 ressply1.1 𝑃 = ( 𝑆s 𝐵 )
7 ressply1invg.1 ( 𝜑𝑋𝐵 )
8 1 2 3 4 5 6 ressply1bas ( 𝜑𝐵 = ( Base ‘ 𝑃 ) )
9 1 2 3 4 5 6 ressply1add ( ( 𝜑 ∧ ( 𝑦𝐵𝑋𝐵 ) ) → ( 𝑦 ( +g𝑈 ) 𝑋 ) = ( 𝑦 ( +g𝑃 ) 𝑋 ) )
10 9 anassrs ( ( ( 𝜑𝑦𝐵 ) ∧ 𝑋𝐵 ) → ( 𝑦 ( +g𝑈 ) 𝑋 ) = ( 𝑦 ( +g𝑃 ) 𝑋 ) )
11 7 10 mpidan ( ( 𝜑𝑦𝐵 ) → ( 𝑦 ( +g𝑈 ) 𝑋 ) = ( 𝑦 ( +g𝑃 ) 𝑋 ) )
12 eqid ( 0g𝑆 ) = ( 0g𝑆 )
13 1 2 3 4 5 12 ressply10g ( 𝜑 → ( 0g𝑆 ) = ( 0g𝑈 ) )
14 1 2 3 4 subrgply1 ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) )
15 5 14 syl ( 𝜑𝐵 ∈ ( SubRing ‘ 𝑆 ) )
16 subrgrcl ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝑆 ∈ Ring )
17 ringmnd ( 𝑆 ∈ Ring → 𝑆 ∈ Mnd )
18 15 16 17 3syl ( 𝜑𝑆 ∈ Mnd )
19 subrgsubg ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ∈ ( SubGrp ‘ 𝑆 ) )
20 12 subg0cl ( 𝐵 ∈ ( SubGrp ‘ 𝑆 ) → ( 0g𝑆 ) ∈ 𝐵 )
21 15 19 20 3syl ( 𝜑 → ( 0g𝑆 ) ∈ 𝐵 )
22 eqid ( PwSer1𝐻 ) = ( PwSer1𝐻 )
23 eqid ( Base ‘ ( PwSer1𝐻 ) ) = ( Base ‘ ( PwSer1𝐻 ) )
24 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
25 1 2 3 4 5 22 23 24 ressply1bas2 ( 𝜑𝐵 = ( ( Base ‘ ( PwSer1𝐻 ) ) ∩ ( Base ‘ 𝑆 ) ) )
26 inss2 ( ( Base ‘ ( PwSer1𝐻 ) ) ∩ ( Base ‘ 𝑆 ) ) ⊆ ( Base ‘ 𝑆 )
27 25 26 eqsstrdi ( 𝜑𝐵 ⊆ ( Base ‘ 𝑆 ) )
28 6 24 12 ress0g ( ( 𝑆 ∈ Mnd ∧ ( 0g𝑆 ) ∈ 𝐵𝐵 ⊆ ( Base ‘ 𝑆 ) ) → ( 0g𝑆 ) = ( 0g𝑃 ) )
29 18 21 27 28 syl3anc ( 𝜑 → ( 0g𝑆 ) = ( 0g𝑃 ) )
30 13 29 eqtr3d ( 𝜑 → ( 0g𝑈 ) = ( 0g𝑃 ) )
31 30 adantr ( ( 𝜑𝑦𝐵 ) → ( 0g𝑈 ) = ( 0g𝑃 ) )
32 11 31 eqeq12d ( ( 𝜑𝑦𝐵 ) → ( ( 𝑦 ( +g𝑈 ) 𝑋 ) = ( 0g𝑈 ) ↔ ( 𝑦 ( +g𝑃 ) 𝑋 ) = ( 0g𝑃 ) ) )
33 8 32 riotaeqbidva ( 𝜑 → ( 𝑦𝐵 ( 𝑦 ( +g𝑈 ) 𝑋 ) = ( 0g𝑈 ) ) = ( 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑦 ( +g𝑃 ) 𝑋 ) = ( 0g𝑃 ) ) )
34 eqid ( +g𝑈 ) = ( +g𝑈 )
35 eqid ( 0g𝑈 ) = ( 0g𝑈 )
36 eqid ( invg𝑈 ) = ( invg𝑈 )
37 4 34 35 36 grpinvval ( 𝑋𝐵 → ( ( invg𝑈 ) ‘ 𝑋 ) = ( 𝑦𝐵 ( 𝑦 ( +g𝑈 ) 𝑋 ) = ( 0g𝑈 ) ) )
38 7 37 syl ( 𝜑 → ( ( invg𝑈 ) ‘ 𝑋 ) = ( 𝑦𝐵 ( 𝑦 ( +g𝑈 ) 𝑋 ) = ( 0g𝑈 ) ) )
39 7 8 eleqtrd ( 𝜑𝑋 ∈ ( Base ‘ 𝑃 ) )
40 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
41 eqid ( +g𝑃 ) = ( +g𝑃 )
42 eqid ( 0g𝑃 ) = ( 0g𝑃 )
43 eqid ( invg𝑃 ) = ( invg𝑃 )
44 40 41 42 43 grpinvval ( 𝑋 ∈ ( Base ‘ 𝑃 ) → ( ( invg𝑃 ) ‘ 𝑋 ) = ( 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑦 ( +g𝑃 ) 𝑋 ) = ( 0g𝑃 ) ) )
45 39 44 syl ( 𝜑 → ( ( invg𝑃 ) ‘ 𝑋 ) = ( 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑦 ( +g𝑃 ) 𝑋 ) = ( 0g𝑃 ) ) )
46 33 38 45 3eqtr4d ( 𝜑 → ( ( invg𝑈 ) ‘ 𝑋 ) = ( ( invg𝑃 ) ‘ 𝑋 ) )