Step |
Hyp |
Ref |
Expression |
1 |
|
ressply.1 |
⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ressply.2 |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
3 |
|
ressply.3 |
⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) |
4 |
|
ressply.4 |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
5 |
|
ressply.5 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
6 |
|
ressply1.1 |
⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) |
7 |
|
ressply1invg.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
1 2 3 4 5 6
|
ressply1bas |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |
9 |
1 2 3 4 5 6
|
ressply1add |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝑈 ) 𝑋 ) = ( 𝑦 ( +g ‘ 𝑃 ) 𝑋 ) ) |
10 |
9
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑈 ) 𝑋 ) = ( 𝑦 ( +g ‘ 𝑃 ) 𝑋 ) ) |
11 |
7 10
|
mpidan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑈 ) 𝑋 ) = ( 𝑦 ( +g ‘ 𝑃 ) 𝑋 ) ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
13 |
1 2 3 4 5 12
|
ressply10g |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
14 |
1 2 3 4
|
subrgply1 |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
15 |
5 14
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
16 |
|
subrgrcl |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝑆 ∈ Ring ) |
17 |
|
ringmnd |
⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ Mnd ) |
18 |
15 16 17
|
3syl |
⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
19 |
|
subrgsubg |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ∈ ( SubGrp ‘ 𝑆 ) ) |
20 |
12
|
subg0cl |
⊢ ( 𝐵 ∈ ( SubGrp ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) ∈ 𝐵 ) |
21 |
15 19 20
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ 𝐵 ) |
22 |
|
eqid |
⊢ ( PwSer1 ‘ 𝐻 ) = ( PwSer1 ‘ 𝐻 ) |
23 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) = ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
25 |
1 2 3 4 5 22 23 24
|
ressply1bas2 |
⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) ∩ ( Base ‘ 𝑆 ) ) ) |
26 |
|
inss2 |
⊢ ( ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) ∩ ( Base ‘ 𝑆 ) ) ⊆ ( Base ‘ 𝑆 ) |
27 |
25 26
|
eqsstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
28 |
6 24 12
|
ress0g |
⊢ ( ( 𝑆 ∈ Mnd ∧ ( 0g ‘ 𝑆 ) ∈ 𝐵 ∧ 𝐵 ⊆ ( Base ‘ 𝑆 ) ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑃 ) ) |
29 |
18 21 27 28
|
syl3anc |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑃 ) ) |
30 |
13 29
|
eqtr3d |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑃 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑃 ) ) |
32 |
11 31
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 ( +g ‘ 𝑈 ) 𝑋 ) = ( 0g ‘ 𝑈 ) ↔ ( 𝑦 ( +g ‘ 𝑃 ) 𝑋 ) = ( 0g ‘ 𝑃 ) ) ) |
33 |
8 32
|
riotaeqbidva |
⊢ ( 𝜑 → ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝑈 ) 𝑋 ) = ( 0g ‘ 𝑈 ) ) = ( ℩ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑦 ( +g ‘ 𝑃 ) 𝑋 ) = ( 0g ‘ 𝑃 ) ) ) |
34 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
35 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
36 |
|
eqid |
⊢ ( invg ‘ 𝑈 ) = ( invg ‘ 𝑈 ) |
37 |
4 34 35 36
|
grpinvval |
⊢ ( 𝑋 ∈ 𝐵 → ( ( invg ‘ 𝑈 ) ‘ 𝑋 ) = ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝑈 ) 𝑋 ) = ( 0g ‘ 𝑈 ) ) ) |
38 |
7 37
|
syl |
⊢ ( 𝜑 → ( ( invg ‘ 𝑈 ) ‘ 𝑋 ) = ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝑈 ) 𝑋 ) = ( 0g ‘ 𝑈 ) ) ) |
39 |
7 8
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
40 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
41 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
42 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
43 |
|
eqid |
⊢ ( invg ‘ 𝑃 ) = ( invg ‘ 𝑃 ) |
44 |
40 41 42 43
|
grpinvval |
⊢ ( 𝑋 ∈ ( Base ‘ 𝑃 ) → ( ( invg ‘ 𝑃 ) ‘ 𝑋 ) = ( ℩ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑦 ( +g ‘ 𝑃 ) 𝑋 ) = ( 0g ‘ 𝑃 ) ) ) |
45 |
39 44
|
syl |
⊢ ( 𝜑 → ( ( invg ‘ 𝑃 ) ‘ 𝑋 ) = ( ℩ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑦 ( +g ‘ 𝑃 ) 𝑋 ) = ( 0g ‘ 𝑃 ) ) ) |
46 |
33 38 45
|
3eqtr4d |
⊢ ( 𝜑 → ( ( invg ‘ 𝑈 ) ‘ 𝑋 ) = ( ( invg ‘ 𝑃 ) ‘ 𝑋 ) ) |