Metamath Proof Explorer


Theorem ressply1mon1p

Description: The monic polynomials of a restricted polynomial algebra. (Contributed by Thierry Arnoux, 21-Jan-2025)

Ref Expression
Hypotheses ressply.1 𝑆 = ( Poly1𝑅 )
ressply.2 𝐻 = ( 𝑅s 𝑇 )
ressply.3 𝑈 = ( Poly1𝐻 )
ressply.4 𝐵 = ( Base ‘ 𝑈 )
ressply.5 ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
ressply1mon1p.m 𝑀 = ( Monic1p𝑅 )
ressply1mon1p.n 𝑁 = ( Monic1p𝐻 )
Assertion ressply1mon1p ( 𝜑𝑁 = ( 𝐵𝑀 ) )

Proof

Step Hyp Ref Expression
1 ressply.1 𝑆 = ( Poly1𝑅 )
2 ressply.2 𝐻 = ( 𝑅s 𝑇 )
3 ressply.3 𝑈 = ( Poly1𝐻 )
4 ressply.4 𝐵 = ( Base ‘ 𝑈 )
5 ressply.5 ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
6 ressply1mon1p.m 𝑀 = ( Monic1p𝑅 )
7 ressply1mon1p.n 𝑁 = ( Monic1p𝐻 )
8 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
9 eqid ( 0g𝑆 ) = ( 0g𝑆 )
10 eqid ( deg1𝑅 ) = ( deg1𝑅 )
11 eqid ( 1r𝑅 ) = ( 1r𝑅 )
12 1 8 9 10 6 11 ismon1p ( 𝑝𝑀 ↔ ( 𝑝 ∈ ( Base ‘ 𝑆 ) ∧ 𝑝 ≠ ( 0g𝑆 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) ) )
13 12 anbi2i ( ( 𝑝𝐵𝑝𝑀 ) ↔ ( 𝑝𝐵 ∧ ( 𝑝 ∈ ( Base ‘ 𝑆 ) ∧ 𝑝 ≠ ( 0g𝑆 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) ) ) )
14 eqid ( 𝑆s 𝐵 ) = ( 𝑆s 𝐵 )
15 1 2 3 4 5 14 ressply1bas ( 𝜑𝐵 = ( Base ‘ ( 𝑆s 𝐵 ) ) )
16 14 8 ressbasss ( Base ‘ ( 𝑆s 𝐵 ) ) ⊆ ( Base ‘ 𝑆 )
17 15 16 eqsstrdi ( 𝜑𝐵 ⊆ ( Base ‘ 𝑆 ) )
18 17 sseld ( 𝜑 → ( 𝑝𝐵𝑝 ∈ ( Base ‘ 𝑆 ) ) )
19 18 pm4.71d ( 𝜑 → ( 𝑝𝐵 ↔ ( 𝑝𝐵𝑝 ∈ ( Base ‘ 𝑆 ) ) ) )
20 19 anbi1d ( 𝜑 → ( ( 𝑝𝐵 ∧ ( 𝑝 ≠ ( 0g𝑆 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) ) ) ↔ ( ( 𝑝𝐵𝑝 ∈ ( Base ‘ 𝑆 ) ) ∧ ( 𝑝 ≠ ( 0g𝑆 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) ) ) ) )
21 13an22anass ( ( 𝑝𝐵 ∧ ( 𝑝 ∈ ( Base ‘ 𝑆 ) ∧ 𝑝 ≠ ( 0g𝑆 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) ) ) ↔ ( ( 𝑝𝐵𝑝 ∈ ( Base ‘ 𝑆 ) ) ∧ ( 𝑝 ≠ ( 0g𝑆 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) ) ) )
22 20 21 bitr4di ( 𝜑 → ( ( 𝑝𝐵 ∧ ( 𝑝 ≠ ( 0g𝑆 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) ) ) ↔ ( 𝑝𝐵 ∧ ( 𝑝 ∈ ( Base ‘ 𝑆 ) ∧ 𝑝 ≠ ( 0g𝑆 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) ) ) ) )
23 1 2 3 4 5 9 ressply10g ( 𝜑 → ( 0g𝑆 ) = ( 0g𝑈 ) )
24 23 neeq2d ( 𝜑 → ( 𝑝 ≠ ( 0g𝑆 ) ↔ 𝑝 ≠ ( 0g𝑈 ) ) )
25 24 adantr ( ( 𝜑𝑝𝐵 ) → ( 𝑝 ≠ ( 0g𝑆 ) ↔ 𝑝 ≠ ( 0g𝑈 ) ) )
26 simpr ( ( 𝜑𝑝𝐵 ) → 𝑝𝐵 )
27 5 adantr ( ( 𝜑𝑝𝐵 ) → 𝑇 ∈ ( SubRing ‘ 𝑅 ) )
28 2 10 3 4 26 27 ressdeg1 ( ( 𝜑𝑝𝐵 ) → ( ( deg1𝑅 ) ‘ 𝑝 ) = ( ( deg1𝐻 ) ‘ 𝑝 ) )
29 28 fveq2d ( ( 𝜑𝑝𝐵 ) → ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( ( coe1𝑝 ) ‘ ( ( deg1𝐻 ) ‘ 𝑝 ) ) )
30 2 11 subrg1 ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 1r𝑅 ) = ( 1r𝐻 ) )
31 5 30 syl ( 𝜑 → ( 1r𝑅 ) = ( 1r𝐻 ) )
32 31 adantr ( ( 𝜑𝑝𝐵 ) → ( 1r𝑅 ) = ( 1r𝐻 ) )
33 29 32 eqeq12d ( ( 𝜑𝑝𝐵 ) → ( ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) ↔ ( ( coe1𝑝 ) ‘ ( ( deg1𝐻 ) ‘ 𝑝 ) ) = ( 1r𝐻 ) ) )
34 25 33 anbi12d ( ( 𝜑𝑝𝐵 ) → ( ( 𝑝 ≠ ( 0g𝑆 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) ) ↔ ( 𝑝 ≠ ( 0g𝑈 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝐻 ) ‘ 𝑝 ) ) = ( 1r𝐻 ) ) ) )
35 34 pm5.32da ( 𝜑 → ( ( 𝑝𝐵 ∧ ( 𝑝 ≠ ( 0g𝑆 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) ) ) ↔ ( 𝑝𝐵 ∧ ( 𝑝 ≠ ( 0g𝑈 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝐻 ) ‘ 𝑝 ) ) = ( 1r𝐻 ) ) ) ) )
36 3anass ( ( 𝑝𝐵𝑝 ≠ ( 0g𝑈 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝐻 ) ‘ 𝑝 ) ) = ( 1r𝐻 ) ) ↔ ( 𝑝𝐵 ∧ ( 𝑝 ≠ ( 0g𝑈 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝐻 ) ‘ 𝑝 ) ) = ( 1r𝐻 ) ) ) )
37 35 36 bitr4di ( 𝜑 → ( ( 𝑝𝐵 ∧ ( 𝑝 ≠ ( 0g𝑆 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) ) ) ↔ ( 𝑝𝐵𝑝 ≠ ( 0g𝑈 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝐻 ) ‘ 𝑝 ) ) = ( 1r𝐻 ) ) ) )
38 22 37 bitr3d ( 𝜑 → ( ( 𝑝𝐵 ∧ ( 𝑝 ∈ ( Base ‘ 𝑆 ) ∧ 𝑝 ≠ ( 0g𝑆 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) ) ) ↔ ( 𝑝𝐵𝑝 ≠ ( 0g𝑈 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝐻 ) ‘ 𝑝 ) ) = ( 1r𝐻 ) ) ) )
39 13 38 bitr2id ( 𝜑 → ( ( 𝑝𝐵𝑝 ≠ ( 0g𝑈 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝐻 ) ‘ 𝑝 ) ) = ( 1r𝐻 ) ) ↔ ( 𝑝𝐵𝑝𝑀 ) ) )
40 eqid ( 0g𝑈 ) = ( 0g𝑈 )
41 eqid ( deg1𝐻 ) = ( deg1𝐻 )
42 eqid ( 1r𝐻 ) = ( 1r𝐻 )
43 3 4 40 41 7 42 ismon1p ( 𝑝𝑁 ↔ ( 𝑝𝐵𝑝 ≠ ( 0g𝑈 ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝐻 ) ‘ 𝑝 ) ) = ( 1r𝐻 ) ) )
44 elin ( 𝑝 ∈ ( 𝐵𝑀 ) ↔ ( 𝑝𝐵𝑝𝑀 ) )
45 39 43 44 3bitr4g ( 𝜑 → ( 𝑝𝑁𝑝 ∈ ( 𝐵𝑀 ) ) )
46 45 eqrdv ( 𝜑𝑁 = ( 𝐵𝑀 ) )