Metamath Proof Explorer


Theorem ressply1sub

Description: A restricted polynomial algebra has the same subtraction operation. (Contributed by Thierry Arnoux, 30-Jan-2025)

Ref Expression
Hypotheses ressply.1 𝑆 = ( Poly1𝑅 )
ressply.2 𝐻 = ( 𝑅s 𝑇 )
ressply.3 𝑈 = ( Poly1𝐻 )
ressply.4 𝐵 = ( Base ‘ 𝑈 )
ressply.5 ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
ressply1.1 𝑃 = ( 𝑆s 𝐵 )
ressply1sub.1 ( 𝜑𝑋𝐵 )
ressply1sub.2 ( 𝜑𝑌𝐵 )
Assertion ressply1sub ( 𝜑 → ( 𝑋 ( -g𝑈 ) 𝑌 ) = ( 𝑋 ( -g𝑃 ) 𝑌 ) )

Proof

Step Hyp Ref Expression
1 ressply.1 𝑆 = ( Poly1𝑅 )
2 ressply.2 𝐻 = ( 𝑅s 𝑇 )
3 ressply.3 𝑈 = ( Poly1𝐻 )
4 ressply.4 𝐵 = ( Base ‘ 𝑈 )
5 ressply.5 ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
6 ressply1.1 𝑃 = ( 𝑆s 𝐵 )
7 ressply1sub.1 ( 𝜑𝑋𝐵 )
8 ressply1sub.2 ( 𝜑𝑌𝐵 )
9 1 2 3 4 5 6 8 ressply1invg ( 𝜑 → ( ( invg𝑈 ) ‘ 𝑌 ) = ( ( invg𝑃 ) ‘ 𝑌 ) )
10 9 oveq2d ( 𝜑 → ( 𝑋 ( +g𝑈 ) ( ( invg𝑈 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g𝑈 ) ( ( invg𝑃 ) ‘ 𝑌 ) ) )
11 1 2 3 4 subrgply1 ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) )
12 subrgsubg ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ∈ ( SubGrp ‘ 𝑆 ) )
13 5 11 12 3syl ( 𝜑𝐵 ∈ ( SubGrp ‘ 𝑆 ) )
14 6 subggrp ( 𝐵 ∈ ( SubGrp ‘ 𝑆 ) → 𝑃 ∈ Grp )
15 13 14 syl ( 𝜑𝑃 ∈ Grp )
16 1 2 3 4 5 6 ressply1bas ( 𝜑𝐵 = ( Base ‘ 𝑃 ) )
17 8 16 eleqtrd ( 𝜑𝑌 ∈ ( Base ‘ 𝑃 ) )
18 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
19 eqid ( invg𝑃 ) = ( invg𝑃 )
20 18 19 grpinvcl ( ( 𝑃 ∈ Grp ∧ 𝑌 ∈ ( Base ‘ 𝑃 ) ) → ( ( invg𝑃 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑃 ) )
21 15 17 20 syl2anc ( 𝜑 → ( ( invg𝑃 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑃 ) )
22 21 16 eleqtrrd ( 𝜑 → ( ( invg𝑃 ) ‘ 𝑌 ) ∈ 𝐵 )
23 7 22 jca ( 𝜑 → ( 𝑋𝐵 ∧ ( ( invg𝑃 ) ‘ 𝑌 ) ∈ 𝐵 ) )
24 1 2 3 4 5 6 ressply1add ( ( 𝜑 ∧ ( 𝑋𝐵 ∧ ( ( invg𝑃 ) ‘ 𝑌 ) ∈ 𝐵 ) ) → ( 𝑋 ( +g𝑈 ) ( ( invg𝑃 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g𝑃 ) ( ( invg𝑃 ) ‘ 𝑌 ) ) )
25 23 24 mpdan ( 𝜑 → ( 𝑋 ( +g𝑈 ) ( ( invg𝑃 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g𝑃 ) ( ( invg𝑃 ) ‘ 𝑌 ) ) )
26 10 25 eqtrd ( 𝜑 → ( 𝑋 ( +g𝑈 ) ( ( invg𝑈 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g𝑃 ) ( ( invg𝑃 ) ‘ 𝑌 ) ) )
27 eqid ( +g𝑈 ) = ( +g𝑈 )
28 eqid ( invg𝑈 ) = ( invg𝑈 )
29 eqid ( -g𝑈 ) = ( -g𝑈 )
30 4 27 28 29 grpsubval ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( -g𝑈 ) 𝑌 ) = ( 𝑋 ( +g𝑈 ) ( ( invg𝑈 ) ‘ 𝑌 ) ) )
31 7 8 30 syl2anc ( 𝜑 → ( 𝑋 ( -g𝑈 ) 𝑌 ) = ( 𝑋 ( +g𝑈 ) ( ( invg𝑈 ) ‘ 𝑌 ) ) )
32 7 16 eleqtrd ( 𝜑𝑋 ∈ ( Base ‘ 𝑃 ) )
33 eqid ( +g𝑃 ) = ( +g𝑃 )
34 eqid ( -g𝑃 ) = ( -g𝑃 )
35 18 33 19 34 grpsubval ( ( 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ 𝑌 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑋 ( -g𝑃 ) 𝑌 ) = ( 𝑋 ( +g𝑃 ) ( ( invg𝑃 ) ‘ 𝑌 ) ) )
36 32 17 35 syl2anc ( 𝜑 → ( 𝑋 ( -g𝑃 ) 𝑌 ) = ( 𝑋 ( +g𝑃 ) ( ( invg𝑃 ) ‘ 𝑌 ) ) )
37 26 31 36 3eqtr4d ( 𝜑 → ( 𝑋 ( -g𝑈 ) 𝑌 ) = ( 𝑋 ( -g𝑃 ) 𝑌 ) )