| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressprdsds.y | ⊢ ( 𝜑  →  𝑌  =  ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) | 
						
							| 2 |  | ressprdsds.h | ⊢ ( 𝜑  →  𝐻  =  ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) ) | 
						
							| 3 |  | ressprdsds.b | ⊢ 𝐵  =  ( Base ‘ 𝐻 ) | 
						
							| 4 |  | ressprdsds.d | ⊢ 𝐷  =  ( dist ‘ 𝑌 ) | 
						
							| 5 |  | ressprdsds.e | ⊢ 𝐸  =  ( dist ‘ 𝐻 ) | 
						
							| 6 |  | ressprdsds.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑈 ) | 
						
							| 7 |  | ressprdsds.t | ⊢ ( 𝜑  →  𝑇  ∈  𝑉 ) | 
						
							| 8 |  | ressprdsds.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 9 |  | ressprdsds.r | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑅  ∈  𝑋 ) | 
						
							| 10 |  | ressprdsds.a | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐴  ∈  𝑍 ) | 
						
							| 11 |  | ovres | ⊢ ( ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 )  →  ( 𝑓 ( 𝐷  ↾  ( 𝐵  ×  𝐵 ) ) 𝑔 )  =  ( 𝑓 𝐷 𝑔 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ( 𝑓 ( 𝐷  ↾  ( 𝐵  ×  𝐵 ) ) 𝑔 )  =  ( 𝑓 𝐷 𝑔 ) ) | 
						
							| 13 |  | eqid | ⊢ ( 𝑅  ↾s  𝐴 )  =  ( 𝑅  ↾s  𝐴 ) | 
						
							| 14 |  | eqid | ⊢ ( dist ‘ 𝑅 )  =  ( dist ‘ 𝑅 ) | 
						
							| 15 | 13 14 | ressds | ⊢ ( 𝐴  ∈  𝑍  →  ( dist ‘ 𝑅 )  =  ( dist ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 16 | 10 15 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( dist ‘ 𝑅 )  =  ( dist ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 17 | 16 | oveqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅  ↾s  𝐴 ) ) ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 18 | 17 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅  ↾s  𝐴 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅  ↾s  𝐴 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) | 
						
							| 20 | 19 | rneqd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) )  =  ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅  ↾s  𝐴 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) | 
						
							| 21 | 20 | uneq1d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } )  =  ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅  ↾s  𝐴 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ) | 
						
							| 22 | 21 | supeq1d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  =  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅  ↾s  𝐴 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) | 
						
							| 23 |  | eqid | ⊢ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) )  =  ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) )  =  ( Base ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) | 
						
							| 25 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  𝑆  ∈  𝑈 ) | 
						
							| 26 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  𝐼  ∈  𝑊 ) | 
						
							| 27 | 9 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 𝑅  ∈  𝑋 ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ∀ 𝑥  ∈  𝐼 𝑅  ∈  𝑋 ) | 
						
							| 29 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 30 | 13 29 | ressbasss | ⊢ ( Base ‘ ( 𝑅  ↾s  𝐴 ) )  ⊆  ( Base ‘ 𝑅 ) | 
						
							| 31 | 30 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( Base ‘ ( 𝑅  ↾s  𝐴 ) )  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 32 | 31 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 ( Base ‘ ( 𝑅  ↾s  𝐴 ) )  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 33 |  | ss2ixp | ⊢ ( ∀ 𝑥  ∈  𝐼 ( Base ‘ ( 𝑅  ↾s  𝐴 ) )  ⊆  ( Base ‘ 𝑅 )  →  X 𝑥  ∈  𝐼 ( Base ‘ ( 𝑅  ↾s  𝐴 ) )  ⊆  X 𝑥  ∈  𝐼 ( Base ‘ 𝑅 ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝜑  →  X 𝑥  ∈  𝐼 ( Base ‘ ( 𝑅  ↾s  𝐴 ) )  ⊆  X 𝑥  ∈  𝐼 ( Base ‘ 𝑅 ) ) | 
						
							| 35 |  | eqid | ⊢ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) )  =  ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 36 |  | eqid | ⊢ ( Base ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) )  =  ( Base ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) ) | 
						
							| 37 |  | ovex | ⊢ ( 𝑅  ↾s  𝐴 )  ∈  V | 
						
							| 38 | 37 | rgenw | ⊢ ∀ 𝑥  ∈  𝐼 ( 𝑅  ↾s  𝐴 )  ∈  V | 
						
							| 39 | 38 | a1i | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 ( 𝑅  ↾s  𝐴 )  ∈  V ) | 
						
							| 40 |  | eqid | ⊢ ( Base ‘ ( 𝑅  ↾s  𝐴 ) )  =  ( Base ‘ ( 𝑅  ↾s  𝐴 ) ) | 
						
							| 41 | 35 36 7 8 39 40 | prdsbas3 | ⊢ ( 𝜑  →  ( Base ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) )  =  X 𝑥  ∈  𝐼 ( Base ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 42 | 23 24 6 8 27 29 | prdsbas3 | ⊢ ( 𝜑  →  ( Base ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) )  =  X 𝑥  ∈  𝐼 ( Base ‘ 𝑅 ) ) | 
						
							| 43 | 34 41 42 | 3sstr4d | ⊢ ( 𝜑  →  ( Base ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) )  ⊆  ( Base ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) ) | 
						
							| 44 | 2 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝐻 )  =  ( Base ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) ) ) | 
						
							| 45 | 3 44 | eqtrid | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) ) ) | 
						
							| 46 | 1 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝑌 )  =  ( Base ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) ) | 
						
							| 47 | 43 45 46 | 3sstr4d | ⊢ ( 𝜑  →  𝐵  ⊆  ( Base ‘ 𝑌 ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  𝐵  ⊆  ( Base ‘ 𝑌 ) ) | 
						
							| 49 | 46 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ( Base ‘ 𝑌 )  =  ( Base ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) ) | 
						
							| 50 | 48 49 | sseqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  𝐵  ⊆  ( Base ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) ) | 
						
							| 51 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  𝑓  ∈  𝐵 ) | 
						
							| 52 | 50 51 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  𝑓  ∈  ( Base ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) ) | 
						
							| 53 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  𝑔  ∈  𝐵 ) | 
						
							| 54 | 50 53 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  𝑔  ∈  ( Base ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) ) | 
						
							| 55 |  | eqid | ⊢ ( dist ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) )  =  ( dist ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) | 
						
							| 56 | 23 24 25 26 28 52 54 14 55 | prdsdsval2 | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ( 𝑓 ( dist ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) 𝑔 )  =  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) | 
						
							| 57 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  𝑇  ∈  𝑉 ) | 
						
							| 58 | 38 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ∀ 𝑥  ∈  𝐼 ( 𝑅  ↾s  𝐴 )  ∈  V ) | 
						
							| 59 | 45 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  𝐵  =  ( Base ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) ) ) | 
						
							| 60 | 51 59 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  𝑓  ∈  ( Base ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) ) ) | 
						
							| 61 | 53 59 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  𝑔  ∈  ( Base ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) ) ) | 
						
							| 62 |  | eqid | ⊢ ( dist ‘ ( 𝑅  ↾s  𝐴 ) )  =  ( dist ‘ ( 𝑅  ↾s  𝐴 ) ) | 
						
							| 63 |  | eqid | ⊢ ( dist ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) )  =  ( dist ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) ) | 
						
							| 64 | 35 36 57 26 58 60 61 62 63 | prdsdsval2 | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ( 𝑓 ( dist ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) ) 𝑔 )  =  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅  ↾s  𝐴 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) | 
						
							| 65 | 22 56 64 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ( 𝑓 ( dist ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) 𝑔 )  =  ( 𝑓 ( dist ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) ) 𝑔 ) ) | 
						
							| 66 | 1 | fveq2d | ⊢ ( 𝜑  →  ( dist ‘ 𝑌 )  =  ( dist ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) ) | 
						
							| 67 | 4 66 | eqtrid | ⊢ ( 𝜑  →  𝐷  =  ( dist ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) ) | 
						
							| 68 | 67 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ( 𝑓 𝐷 𝑔 )  =  ( 𝑓 ( dist ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) 𝑔 ) ) | 
						
							| 69 | 2 | fveq2d | ⊢ ( 𝜑  →  ( dist ‘ 𝐻 )  =  ( dist ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) ) ) | 
						
							| 70 | 5 69 | eqtrid | ⊢ ( 𝜑  →  𝐸  =  ( dist ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) ) ) | 
						
							| 71 | 70 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ( 𝑓 𝐸 𝑔 )  =  ( 𝑓 ( dist ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) ) 𝑔 ) ) | 
						
							| 72 | 65 68 71 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ( 𝑓 𝐷 𝑔 )  =  ( 𝑓 𝐸 𝑔 ) ) | 
						
							| 73 | 12 72 | eqtr2d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ( 𝑓 𝐸 𝑔 )  =  ( 𝑓 ( 𝐷  ↾  ( 𝐵  ×  𝐵 ) ) 𝑔 ) ) | 
						
							| 74 | 73 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  𝐵 ∀ 𝑔  ∈  𝐵 ( 𝑓 𝐸 𝑔 )  =  ( 𝑓 ( 𝐷  ↾  ( 𝐵  ×  𝐵 ) ) 𝑔 ) ) | 
						
							| 75 | 8 | mptexd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) )  ∈  V ) | 
						
							| 76 |  | eqid | ⊢ ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) | 
						
							| 77 | 37 76 | dmmpti | ⊢ dom  ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) )  =  𝐼 | 
						
							| 78 | 77 | a1i | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) )  =  𝐼 ) | 
						
							| 79 | 35 7 75 36 78 63 | prdsdsfn | ⊢ ( 𝜑  →  ( dist ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) )  Fn  ( ( Base ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) )  ×  ( Base ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) ) ) ) | 
						
							| 80 | 45 | sqxpeqd | ⊢ ( 𝜑  →  ( 𝐵  ×  𝐵 )  =  ( ( Base ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) )  ×  ( Base ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) ) ) ) | 
						
							| 81 | 70 80 | fneq12d | ⊢ ( 𝜑  →  ( 𝐸  Fn  ( 𝐵  ×  𝐵 )  ↔  ( dist ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) )  Fn  ( ( Base ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) )  ×  ( Base ‘ ( 𝑇 Xs ( 𝑥  ∈  𝐼  ↦  ( 𝑅  ↾s  𝐴 ) ) ) ) ) ) ) | 
						
							| 82 | 79 81 | mpbird | ⊢ ( 𝜑  →  𝐸  Fn  ( 𝐵  ×  𝐵 ) ) | 
						
							| 83 | 8 | mptexd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  𝑅 )  ∈  V ) | 
						
							| 84 |  | dmmptg | ⊢ ( ∀ 𝑥  ∈  𝐼 𝑅  ∈  𝑋  →  dom  ( 𝑥  ∈  𝐼  ↦  𝑅 )  =  𝐼 ) | 
						
							| 85 | 27 84 | syl | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐼  ↦  𝑅 )  =  𝐼 ) | 
						
							| 86 | 23 6 83 24 85 55 | prdsdsfn | ⊢ ( 𝜑  →  ( dist ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) )  Fn  ( ( Base ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) )  ×  ( Base ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) ) ) | 
						
							| 87 | 46 | sqxpeqd | ⊢ ( 𝜑  →  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) )  =  ( ( Base ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) )  ×  ( Base ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) ) ) | 
						
							| 88 | 67 87 | fneq12d | ⊢ ( 𝜑  →  ( 𝐷  Fn  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) )  ↔  ( dist ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) )  Fn  ( ( Base ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) )  ×  ( Base ‘ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) ) ) ) ) | 
						
							| 89 | 86 88 | mpbird | ⊢ ( 𝜑  →  𝐷  Fn  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) ) | 
						
							| 90 |  | xpss12 | ⊢ ( ( 𝐵  ⊆  ( Base ‘ 𝑌 )  ∧  𝐵  ⊆  ( Base ‘ 𝑌 ) )  →  ( 𝐵  ×  𝐵 )  ⊆  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) ) | 
						
							| 91 | 47 47 90 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ×  𝐵 )  ⊆  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) ) | 
						
							| 92 |  | fnssres | ⊢ ( ( 𝐷  Fn  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) )  ∧  ( 𝐵  ×  𝐵 )  ⊆  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) )  →  ( 𝐷  ↾  ( 𝐵  ×  𝐵 ) )  Fn  ( 𝐵  ×  𝐵 ) ) | 
						
							| 93 | 89 91 92 | syl2anc | ⊢ ( 𝜑  →  ( 𝐷  ↾  ( 𝐵  ×  𝐵 ) )  Fn  ( 𝐵  ×  𝐵 ) ) | 
						
							| 94 |  | eqfnov2 | ⊢ ( ( 𝐸  Fn  ( 𝐵  ×  𝐵 )  ∧  ( 𝐷  ↾  ( 𝐵  ×  𝐵 ) )  Fn  ( 𝐵  ×  𝐵 ) )  →  ( 𝐸  =  ( 𝐷  ↾  ( 𝐵  ×  𝐵 ) )  ↔  ∀ 𝑓  ∈  𝐵 ∀ 𝑔  ∈  𝐵 ( 𝑓 𝐸 𝑔 )  =  ( 𝑓 ( 𝐷  ↾  ( 𝐵  ×  𝐵 ) ) 𝑔 ) ) ) | 
						
							| 95 | 82 93 94 | syl2anc | ⊢ ( 𝜑  →  ( 𝐸  =  ( 𝐷  ↾  ( 𝐵  ×  𝐵 ) )  ↔  ∀ 𝑓  ∈  𝐵 ∀ 𝑔  ∈  𝐵 ( 𝑓 𝐸 𝑔 )  =  ( 𝑓 ( 𝐷  ↾  ( 𝐵  ×  𝐵 ) ) 𝑔 ) ) ) | 
						
							| 96 | 74 95 | mpbird | ⊢ ( 𝜑  →  𝐸  =  ( 𝐷  ↾  ( 𝐵  ×  𝐵 ) ) ) |