| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resspsr.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | resspsr.h | ⊢ 𝐻  =  ( 𝑅  ↾s  𝑇 ) | 
						
							| 3 |  | resspsr.u | ⊢ 𝑈  =  ( 𝐼  mPwSer  𝐻 ) | 
						
							| 4 |  | resspsr.b | ⊢ 𝐵  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | resspsr.p | ⊢ 𝑃  =  ( 𝑆  ↾s  𝐵 ) | 
						
							| 6 |  | resspsr.2 | ⊢ ( 𝜑  →  𝑇  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 7 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 8 |  | eqid | ⊢ ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑈 ) | 
						
							| 9 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 10 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 11 | 3 4 7 8 9 10 | psradd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 )  =  ( 𝑋  ∘f  ( +g ‘ 𝐻 ) 𝑌 ) ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 13 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 15 |  | fvex | ⊢ ( Base ‘ 𝑅 )  ∈  V | 
						
							| 16 | 2 | subrgbas | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝑇  =  ( Base ‘ 𝐻 ) ) | 
						
							| 17 | 6 16 | syl | ⊢ ( 𝜑  →  𝑇  =  ( Base ‘ 𝐻 ) ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 19 | 18 | subrgss | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝑇  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 20 | 6 19 | syl | ⊢ ( 𝜑  →  𝑇  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 21 | 17 20 | eqsstrrd | ⊢ ( 𝜑  →  ( Base ‘ 𝐻 )  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 22 |  | mapss | ⊢ ( ( ( Base ‘ 𝑅 )  ∈  V  ∧  ( Base ‘ 𝐻 )  ⊆  ( Base ‘ 𝑅 ) )  →  ( ( Base ‘ 𝐻 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ⊆  ( ( Base ‘ 𝑅 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 23 | 15 21 22 | sylancr | ⊢ ( 𝜑  →  ( ( Base ‘ 𝐻 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ⊆  ( ( Base ‘ 𝑅 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( Base ‘ 𝐻 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ⊆  ( ( Base ‘ 𝑅 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 25 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 26 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 27 |  | reldmpsr | ⊢ Rel  dom   mPwSer | 
						
							| 28 | 27 3 4 | elbasov | ⊢ ( 𝑋  ∈  𝐵  →  ( 𝐼  ∈  V  ∧  𝐻  ∈  V ) ) | 
						
							| 29 | 28 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝐼  ∈  V  ∧  𝐻  ∈  V ) ) | 
						
							| 30 | 29 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝐼  ∈  V ) | 
						
							| 31 | 3 25 26 4 30 | psrbas | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝐵  =  ( ( Base ‘ 𝐻 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 32 | 1 18 26 12 30 | psrbas | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( Base ‘ 𝑆 )  =  ( ( Base ‘ 𝑅 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 33 | 24 31 32 | 3sstr4d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝐵  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 34 | 33 9 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑋  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 35 | 33 10 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑌  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 36 | 1 12 13 14 34 35 | psradd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 )  =  ( 𝑋  ∘f  ( +g ‘ 𝑅 ) 𝑌 ) ) | 
						
							| 37 | 2 13 | ressplusg | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  ( +g ‘ 𝑅 )  =  ( +g ‘ 𝐻 ) ) | 
						
							| 38 | 6 37 | syl | ⊢ ( 𝜑  →  ( +g ‘ 𝑅 )  =  ( +g ‘ 𝐻 ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( +g ‘ 𝑅 )  =  ( +g ‘ 𝐻 ) ) | 
						
							| 40 | 39 | ofeqd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →   ∘f  ( +g ‘ 𝑅 )  =   ∘f  ( +g ‘ 𝐻 ) ) | 
						
							| 41 | 40 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋  ∘f  ( +g ‘ 𝑅 ) 𝑌 )  =  ( 𝑋  ∘f  ( +g ‘ 𝐻 ) 𝑌 ) ) | 
						
							| 42 | 36 41 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 )  =  ( 𝑋  ∘f  ( +g ‘ 𝐻 ) 𝑌 ) ) | 
						
							| 43 | 4 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 44 | 5 14 | ressplusg | ⊢ ( 𝐵  ∈  V  →  ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑃 ) ) | 
						
							| 45 | 43 44 | mp1i | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑃 ) ) | 
						
							| 46 | 45 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 )  =  ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 ) ) | 
						
							| 47 | 11 42 46 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 )  =  ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 ) ) |