| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resspsr.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | resspsr.h | ⊢ 𝐻  =  ( 𝑅  ↾s  𝑇 ) | 
						
							| 3 |  | resspsr.u | ⊢ 𝑈  =  ( 𝐼  mPwSer  𝐻 ) | 
						
							| 4 |  | resspsr.b | ⊢ 𝐵  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | resspsr.p | ⊢ 𝑃  =  ( 𝑆  ↾s  𝐵 ) | 
						
							| 6 |  | resspsr.2 | ⊢ ( 𝜑  →  𝑇  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 7 |  | fvex | ⊢ ( Base ‘ 𝑅 )  ∈  V | 
						
							| 8 | 2 | subrgbas | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝑇  =  ( Base ‘ 𝐻 ) ) | 
						
							| 9 | 6 8 | syl | ⊢ ( 𝜑  →  𝑇  =  ( Base ‘ 𝐻 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 11 | 10 | subrgss | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝑇  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 12 | 6 11 | syl | ⊢ ( 𝜑  →  𝑇  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 13 | 9 12 | eqsstrrd | ⊢ ( 𝜑  →  ( Base ‘ 𝐻 )  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  ∈  V )  →  ( Base ‘ 𝐻 )  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 15 |  | mapss | ⊢ ( ( ( Base ‘ 𝑅 )  ∈  V  ∧  ( Base ‘ 𝐻 )  ⊆  ( Base ‘ 𝑅 ) )  →  ( ( Base ‘ 𝐻 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ⊆  ( ( Base ‘ 𝑅 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 16 | 7 14 15 | sylancr | ⊢ ( ( 𝜑  ∧  𝐼  ∈  V )  →  ( ( Base ‘ 𝐻 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ⊆  ( ( Base ‘ 𝑅 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 18 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐼  ∈  V )  →  𝐼  ∈  V ) | 
						
							| 20 | 3 17 18 4 19 | psrbas | ⊢ ( ( 𝜑  ∧  𝐼  ∈  V )  →  𝐵  =  ( ( Base ‘ 𝐻 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 21 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 22 | 1 10 18 21 19 | psrbas | ⊢ ( ( 𝜑  ∧  𝐼  ∈  V )  →  ( Base ‘ 𝑆 )  =  ( ( Base ‘ 𝑅 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 23 | 16 20 22 | 3sstr4d | ⊢ ( ( 𝜑  ∧  𝐼  ∈  V )  →  𝐵  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 24 |  | reldmpsr | ⊢ Rel  dom   mPwSer | 
						
							| 25 | 24 | ovprc1 | ⊢ ( ¬  𝐼  ∈  V  →  ( 𝐼  mPwSer  𝐻 )  =  ∅ ) | 
						
							| 26 | 3 25 | eqtrid | ⊢ ( ¬  𝐼  ∈  V  →  𝑈  =  ∅ ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝐼  ∈  V )  →  𝑈  =  ∅ ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( ( 𝜑  ∧  ¬  𝐼  ∈  V )  →  ( Base ‘ 𝑈 )  =  ( Base ‘ ∅ ) ) | 
						
							| 29 |  | base0 | ⊢ ∅  =  ( Base ‘ ∅ ) | 
						
							| 30 | 28 4 29 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  ¬  𝐼  ∈  V )  →  𝐵  =  ∅ ) | 
						
							| 31 |  | 0ss | ⊢ ∅  ⊆  ( Base ‘ 𝑆 ) | 
						
							| 32 | 30 31 | eqsstrdi | ⊢ ( ( 𝜑  ∧  ¬  𝐼  ∈  V )  →  𝐵  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 33 | 23 32 | pm2.61dan | ⊢ ( 𝜑  →  𝐵  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 34 | 5 21 | ressbas2 | ⊢ ( 𝐵  ⊆  ( Base ‘ 𝑆 )  →  𝐵  =  ( Base ‘ 𝑃 ) ) | 
						
							| 35 | 33 34 | syl | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑃 ) ) |