| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resspsr.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | resspsr.h | ⊢ 𝐻  =  ( 𝑅  ↾s  𝑇 ) | 
						
							| 3 |  | resspsr.u | ⊢ 𝑈  =  ( 𝐼  mPwSer  𝐻 ) | 
						
							| 4 |  | resspsr.b | ⊢ 𝐵  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | resspsr.p | ⊢ 𝑃  =  ( 𝑆  ↾s  𝐵 ) | 
						
							| 6 |  | resspsr.2 | ⊢ ( 𝜑  →  𝑇  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 7 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 8 | 7 | psrbaglefi | ⊢ ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  →  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  ∈  Fin ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  ∈  Fin ) | 
						
							| 10 |  | subrgsubg | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝑇  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 11 | 6 10 | syl | ⊢ ( 𝜑  →  𝑇  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 12 |  | subgsubm | ⊢ ( 𝑇  ∈  ( SubGrp ‘ 𝑅 )  →  𝑇  ∈  ( SubMnd ‘ 𝑅 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝜑  →  𝑇  ∈  ( SubMnd ‘ 𝑅 ) ) | 
						
							| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  𝑇  ∈  ( SubMnd ‘ 𝑅 ) ) | 
						
							| 15 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑇  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 17 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 18 | 3 16 7 4 17 | psrelbas | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑋 : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  𝑋 : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 20 |  | elrabi | ⊢ ( 𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  →  𝑥  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) | 
						
							| 21 |  | ffvelcdm | ⊢ ( ( 𝑋 : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝐻 )  ∧  𝑥  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑋 ‘ 𝑥 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 22 | 19 20 21 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( 𝑋 ‘ 𝑥 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 23 | 2 | subrgbas | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝑇  =  ( Base ‘ 𝐻 ) ) | 
						
							| 24 | 15 23 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑇  =  ( Base ‘ 𝐻 ) ) | 
						
							| 25 | 22 24 | eleqtrrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( 𝑋 ‘ 𝑥 )  ∈  𝑇 ) | 
						
							| 26 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 27 | 3 16 7 4 26 | psrelbas | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑌 : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 28 | 27 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑌 : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 29 |  | ssrab2 | ⊢ { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  ⊆  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 30 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) | 
						
							| 31 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } ) | 
						
							| 32 |  | eqid | ⊢ { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  =  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } | 
						
							| 33 | 7 32 | psrbagconcl | ⊢ ( ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∧  𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( 𝑘  ∘f   −  𝑥 )  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } ) | 
						
							| 34 | 30 31 33 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( 𝑘  ∘f   −  𝑥 )  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } ) | 
						
							| 35 | 29 34 | sselid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( 𝑘  ∘f   −  𝑥 )  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) | 
						
							| 36 | 28 35 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 37 | 36 24 | eleqtrrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) )  ∈  𝑇 ) | 
						
							| 38 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 39 | 38 | subrgmcl | ⊢ ( ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  ∧  ( 𝑋 ‘ 𝑥 )  ∈  𝑇  ∧  ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) )  ∈  𝑇 )  →  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) )  ∈  𝑇 ) | 
						
							| 40 | 15 25 37 39 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) )  ∈  𝑇 ) | 
						
							| 41 | 40 | fmpttd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) : { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } ⟶ 𝑇 ) | 
						
							| 42 | 9 14 41 2 | gsumsubm | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) )  =  ( 𝐻  Σg  ( 𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) ) | 
						
							| 43 | 2 38 | ressmulr | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  ( .r ‘ 𝑅 )  =  ( .r ‘ 𝐻 ) ) | 
						
							| 44 | 6 43 | syl | ⊢ ( 𝜑  →  ( .r ‘ 𝑅 )  =  ( .r ‘ 𝐻 ) ) | 
						
							| 45 | 44 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( .r ‘ 𝑅 )  =  ( .r ‘ 𝐻 ) ) | 
						
							| 46 | 45 | oveqd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) )  =  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) | 
						
							| 47 | 46 | mpteq2dva | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  =  ( 𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) | 
						
							| 48 | 47 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝐻  Σg  ( 𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) )  =  ( 𝐻  Σg  ( 𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) ) | 
						
							| 49 | 42 48 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) )  =  ( 𝐻  Σg  ( 𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) ) | 
						
							| 50 | 49 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) )  =  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( 𝐻  Σg  ( 𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) ) ) | 
						
							| 51 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 52 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 53 |  | fvex | ⊢ ( Base ‘ 𝑅 )  ∈  V | 
						
							| 54 | 6 23 | syl | ⊢ ( 𝜑  →  𝑇  =  ( Base ‘ 𝐻 ) ) | 
						
							| 55 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 56 | 55 | subrgss | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝑇  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 57 | 6 56 | syl | ⊢ ( 𝜑  →  𝑇  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 58 | 54 57 | eqsstrrd | ⊢ ( 𝜑  →  ( Base ‘ 𝐻 )  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 59 |  | mapss | ⊢ ( ( ( Base ‘ 𝑅 )  ∈  V  ∧  ( Base ‘ 𝐻 )  ⊆  ( Base ‘ 𝑅 ) )  →  ( ( Base ‘ 𝐻 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ⊆  ( ( Base ‘ 𝑅 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 60 | 53 58 59 | sylancr | ⊢ ( 𝜑  →  ( ( Base ‘ 𝐻 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ⊆  ( ( Base ‘ 𝑅 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( Base ‘ 𝐻 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ⊆  ( ( Base ‘ 𝑅 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 62 |  | reldmpsr | ⊢ Rel  dom   mPwSer | 
						
							| 63 | 62 3 4 | elbasov | ⊢ ( 𝑋  ∈  𝐵  →  ( 𝐼  ∈  V  ∧  𝐻  ∈  V ) ) | 
						
							| 64 | 63 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝐼  ∈  V  ∧  𝐻  ∈  V ) ) | 
						
							| 65 | 64 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝐼  ∈  V ) | 
						
							| 66 | 3 16 7 4 65 | psrbas | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝐵  =  ( ( Base ‘ 𝐻 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 67 | 1 55 7 51 65 | psrbas | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( Base ‘ 𝑆 )  =  ( ( Base ‘ 𝑅 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 68 | 61 66 67 | 3sstr4d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝐵  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 69 | 68 17 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑋  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 70 | 68 26 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑌  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 71 | 1 51 38 52 7 69 70 | psrmulfval | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 )  =  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) ) ) | 
						
							| 72 |  | eqid | ⊢ ( .r ‘ 𝐻 )  =  ( .r ‘ 𝐻 ) | 
						
							| 73 |  | eqid | ⊢ ( .r ‘ 𝑈 )  =  ( .r ‘ 𝑈 ) | 
						
							| 74 | 3 4 72 73 7 17 26 | psrmulfval | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 ( .r ‘ 𝑈 ) 𝑌 )  =  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( 𝐻  Σg  ( 𝑥  ∈  { 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) ) ) | 
						
							| 75 | 50 71 74 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 ( .r ‘ 𝑈 ) 𝑌 )  =  ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ) | 
						
							| 76 | 4 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 77 | 5 52 | ressmulr | ⊢ ( 𝐵  ∈  V  →  ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑃 ) ) | 
						
							| 78 | 76 77 | mp1i | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑃 ) ) | 
						
							| 79 | 78 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 )  =  ( 𝑋 ( .r ‘ 𝑃 ) 𝑌 ) ) | 
						
							| 80 | 75 79 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 ( .r ‘ 𝑈 ) 𝑌 )  =  ( 𝑋 ( .r ‘ 𝑃 ) 𝑌 ) ) |