| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resspsr.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | resspsr.h | ⊢ 𝐻  =  ( 𝑅  ↾s  𝑇 ) | 
						
							| 3 |  | resspsr.u | ⊢ 𝑈  =  ( 𝐼  mPwSer  𝐻 ) | 
						
							| 4 |  | resspsr.b | ⊢ 𝐵  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | resspsr.p | ⊢ 𝑃  =  ( 𝑆  ↾s  𝐵 ) | 
						
							| 6 |  | resspsr.2 | ⊢ ( 𝜑  →  𝑇  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 7 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑈 )  =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 9 |  | eqid | ⊢ ( .r ‘ 𝐻 )  =  ( .r ‘ 𝐻 ) | 
						
							| 10 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 11 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  𝑋  ∈  𝑇 ) | 
						
							| 12 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  𝑇  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 13 | 2 | subrgbas | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝑇  =  ( Base ‘ 𝐻 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  𝑇  =  ( Base ‘ 𝐻 ) ) | 
						
							| 15 | 11 14 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  𝑋  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 16 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 17 | 3 7 8 4 9 10 15 16 | psrvsca | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 (  ·𝑠  ‘ 𝑈 ) 𝑌 )  =  ( ( { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝐻 ) 𝑌 ) ) | 
						
							| 18 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑆 ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 21 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 22 | 19 | subrgss | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝑇  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 23 | 12 22 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  𝑇  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 24 | 23 11 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  𝑋  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 25 | 1 2 3 4 5 6 | resspsrbas | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑃 ) ) | 
						
							| 26 | 5 20 | ressbasss | ⊢ ( Base ‘ 𝑃 )  ⊆  ( Base ‘ 𝑆 ) | 
						
							| 27 | 25 26 | eqsstrdi | ⊢ ( 𝜑  →  𝐵  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  𝐵  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 29 | 28 16 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  𝑌  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 30 | 1 18 19 20 21 10 24 29 | psrvsca | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 (  ·𝑠  ‘ 𝑆 ) 𝑌 )  =  ( ( { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) 𝑌 ) ) | 
						
							| 31 | 2 21 | ressmulr | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  ( .r ‘ 𝑅 )  =  ( .r ‘ 𝐻 ) ) | 
						
							| 32 |  | ofeq | ⊢ ( ( .r ‘ 𝑅 )  =  ( .r ‘ 𝐻 )  →   ∘f  ( .r ‘ 𝑅 )  =   ∘f  ( .r ‘ 𝐻 ) ) | 
						
							| 33 | 12 31 32 | 3syl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →   ∘f  ( .r ‘ 𝑅 )  =   ∘f  ( .r ‘ 𝐻 ) ) | 
						
							| 34 | 33 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  ( ( { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) 𝑌 )  =  ( ( { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝐻 ) 𝑌 ) ) | 
						
							| 35 | 30 34 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 (  ·𝑠  ‘ 𝑆 ) 𝑌 )  =  ( ( { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝐻 ) 𝑌 ) ) | 
						
							| 36 | 4 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 37 | 5 18 | ressvsca | ⊢ ( 𝐵  ∈  V  →  (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑃 ) ) | 
						
							| 38 | 36 37 | mp1i | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑃 ) ) | 
						
							| 39 | 38 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 (  ·𝑠  ‘ 𝑆 ) 𝑌 )  =  ( 𝑋 (  ·𝑠  ‘ 𝑃 ) 𝑌 ) ) | 
						
							| 40 | 17 35 39 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑇  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋 (  ·𝑠  ‘ 𝑈 ) 𝑌 )  =  ( 𝑋 (  ·𝑠  ‘ 𝑃 ) 𝑌 ) ) |