Step |
Hyp |
Ref |
Expression |
1 |
|
resspwsds.y |
⊢ ( 𝜑 → 𝑌 = ( 𝑅 ↑s 𝐼 ) ) |
2 |
|
resspwsds.h |
⊢ ( 𝜑 → 𝐻 = ( ( 𝑅 ↾s 𝐴 ) ↑s 𝐼 ) ) |
3 |
|
resspwsds.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
4 |
|
resspwsds.d |
⊢ 𝐷 = ( dist ‘ 𝑌 ) |
5 |
|
resspwsds.e |
⊢ 𝐸 = ( dist ‘ 𝐻 ) |
6 |
|
resspwsds.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
7 |
|
resspwsds.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
8 |
|
resspwsds.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
9 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐼 ) = ( 𝑅 ↑s 𝐼 ) |
10 |
|
eqid |
⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) |
11 |
9 10
|
pwsval |
⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑉 ) → ( 𝑅 ↑s 𝐼 ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
12 |
7 6 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ↑s 𝐼 ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
13 |
|
fconstmpt |
⊢ ( 𝐼 × { 𝑅 } ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) |
14 |
13
|
oveq2i |
⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) |
15 |
12 14
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑅 ↑s 𝐼 ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) |
16 |
1 15
|
eqtrd |
⊢ ( 𝜑 → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) |
17 |
|
ovex |
⊢ ( 𝑅 ↾s 𝐴 ) ∈ V |
18 |
|
eqid |
⊢ ( ( 𝑅 ↾s 𝐴 ) ↑s 𝐼 ) = ( ( 𝑅 ↾s 𝐴 ) ↑s 𝐼 ) |
19 |
|
eqid |
⊢ ( Scalar ‘ ( 𝑅 ↾s 𝐴 ) ) = ( Scalar ‘ ( 𝑅 ↾s 𝐴 ) ) |
20 |
18 19
|
pwsval |
⊢ ( ( ( 𝑅 ↾s 𝐴 ) ∈ V ∧ 𝐼 ∈ 𝑉 ) → ( ( 𝑅 ↾s 𝐴 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( 𝑅 ↾s 𝐴 ) ) Xs ( 𝐼 × { ( 𝑅 ↾s 𝐴 ) } ) ) ) |
21 |
17 6 20
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑅 ↾s 𝐴 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( 𝑅 ↾s 𝐴 ) ) Xs ( 𝐼 × { ( 𝑅 ↾s 𝐴 ) } ) ) ) |
22 |
|
fconstmpt |
⊢ ( 𝐼 × { ( 𝑅 ↾s 𝐴 ) } ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) |
23 |
22
|
oveq2i |
⊢ ( ( Scalar ‘ ( 𝑅 ↾s 𝐴 ) ) Xs ( 𝐼 × { ( 𝑅 ↾s 𝐴 ) } ) ) = ( ( Scalar ‘ ( 𝑅 ↾s 𝐴 ) ) Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) |
24 |
21 23
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑅 ↾s 𝐴 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( 𝑅 ↾s 𝐴 ) ) Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) |
25 |
2 24
|
eqtrd |
⊢ ( 𝜑 → 𝐻 = ( ( Scalar ‘ ( 𝑅 ↾s 𝐴 ) ) Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) |
26 |
|
fvexd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑅 ) ∈ V ) |
27 |
|
fvexd |
⊢ ( 𝜑 → ( Scalar ‘ ( 𝑅 ↾s 𝐴 ) ) ∈ V ) |
28 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ 𝑊 ) |
29 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐴 ∈ 𝑋 ) |
30 |
16 25 3 4 5 26 27 6 28 29
|
ressprdsds |
⊢ ( 𝜑 → 𝐸 = ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) ) |