Metamath Proof Explorer


Theorem ressress

Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014) (Proof shortened by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion ressress ( ( 𝐴𝑋𝐵𝑌 ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s ( 𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 simplr ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 )
2 simpr1 ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → 𝑊 ∈ V )
3 simpr2 ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → 𝐴𝑋 )
4 eqid ( 𝑊s 𝐴 ) = ( 𝑊s 𝐴 )
5 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
6 4 5 ressval2 ( ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑋 ) → ( 𝑊s 𝐴 ) = ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ) )
7 1 2 3 6 syl3anc ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝑊s 𝐴 ) = ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ) )
8 inass ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) = ( 𝐴 ∩ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) )
9 in12 ( 𝐴 ∩ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝐵 ∩ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) )
10 8 9 eqtri ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) = ( 𝐵 ∩ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) )
11 4 5 ressbas ( 𝐴𝑋 → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ ( 𝑊s 𝐴 ) ) )
12 3 11 syl ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ ( 𝑊s 𝐴 ) ) )
13 12 ineq2d ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝐵 ∩ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝐵 ∩ ( Base ‘ ( 𝑊s 𝐴 ) ) ) )
14 10 13 eqtr2id ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝐵 ∩ ( Base ‘ ( 𝑊s 𝐴 ) ) ) = ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) )
15 14 opeq2d ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ⟨ ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊s 𝐴 ) ) ) ⟩ = ⟨ ( Base ‘ ndx ) , ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ⟩ )
16 7 15 oveq12d ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( ( 𝑊s 𝐴 ) sSet ⟨ ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊s 𝐴 ) ) ) ⟩ ) = ( ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ⟩ ) )
17 fvex ( Base ‘ 𝑊 ) ∈ V
18 17 inex2 ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ∈ V
19 setsabs ( ( 𝑊 ∈ V ∧ ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ∈ V ) → ( ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ⟩ ) = ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ⟩ ) )
20 2 18 19 sylancl ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ⟩ ) = ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ⟩ ) )
21 16 20 eqtrd ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( ( 𝑊s 𝐴 ) sSet ⟨ ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊s 𝐴 ) ) ) ⟩ ) = ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ⟩ ) )
22 simpll ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 )
23 ovexd ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝑊s 𝐴 ) ∈ V )
24 simpr3 ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → 𝐵𝑌 )
25 eqid ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( ( 𝑊s 𝐴 ) ↾s 𝐵 )
26 eqid ( Base ‘ ( 𝑊s 𝐴 ) ) = ( Base ‘ ( 𝑊s 𝐴 ) )
27 25 26 ressval2 ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊s 𝐴 ) ∈ V ∧ 𝐵𝑌 ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( ( 𝑊s 𝐴 ) sSet ⟨ ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊s 𝐴 ) ) ) ⟩ ) )
28 22 23 24 27 syl3anc ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( ( 𝑊s 𝐴 ) sSet ⟨ ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊s 𝐴 ) ) ) ⟩ ) )
29 inss1 ( 𝐴𝐵 ) ⊆ 𝐴
30 sstr ( ( ( Base ‘ 𝑊 ) ⊆ ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ⊆ 𝐴 ) → ( Base ‘ 𝑊 ) ⊆ 𝐴 )
31 29 30 mpan2 ( ( Base ‘ 𝑊 ) ⊆ ( 𝐴𝐵 ) → ( Base ‘ 𝑊 ) ⊆ 𝐴 )
32 1 31 nsyl ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ¬ ( Base ‘ 𝑊 ) ⊆ ( 𝐴𝐵 ) )
33 inex1g ( 𝐴𝑋 → ( 𝐴𝐵 ) ∈ V )
34 3 33 syl ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝐴𝐵 ) ∈ V )
35 eqid ( 𝑊s ( 𝐴𝐵 ) ) = ( 𝑊s ( 𝐴𝐵 ) )
36 35 5 ressval2 ( ( ¬ ( Base ‘ 𝑊 ) ⊆ ( 𝐴𝐵 ) ∧ 𝑊 ∈ V ∧ ( 𝐴𝐵 ) ∈ V ) → ( 𝑊s ( 𝐴𝐵 ) ) = ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ⟩ ) )
37 32 2 34 36 syl3anc ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝑊s ( 𝐴𝐵 ) ) = ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ⟩ ) )
38 21 28 37 3eqtr4d ( ( ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s ( 𝐴𝐵 ) ) )
39 38 exp31 ( ¬ ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 → ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s ( 𝐴𝐵 ) ) ) ) )
40 ovex ( 𝑊s 𝐴 ) ∈ V
41 25 26 ressid2 ( ( ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊s 𝐴 ) ∈ V ∧ 𝐵𝑌 ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s 𝐴 ) )
42 40 41 mp3an2 ( ( ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵𝐵𝑌 ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s 𝐴 ) )
43 42 3ad2antr3 ( ( ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s 𝐴 ) )
44 in32 ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) = ( ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ∩ 𝐵 )
45 simpr2 ( ( ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → 𝐴𝑋 )
46 45 11 syl ( ( ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ ( 𝑊s 𝐴 ) ) )
47 simpl ( ( ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 )
48 46 47 eqsstrd ( ( ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐵 )
49 df-ss ( ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐵 ↔ ( ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ∩ 𝐵 ) = ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) )
50 48 49 sylib ( ( ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ∩ 𝐵 ) = ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) )
51 44 50 eqtr2id ( ( ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) )
52 51 oveq2d ( ( ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝑊s ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝑊s ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) )
53 5 ressinbas ( 𝐴𝑋 → ( 𝑊s 𝐴 ) = ( 𝑊s ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) )
54 45 53 syl ( ( ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝑊s 𝐴 ) = ( 𝑊s ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) )
55 5 ressinbas ( ( 𝐴𝐵 ) ∈ V → ( 𝑊s ( 𝐴𝐵 ) ) = ( 𝑊s ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) )
56 45 33 55 3syl ( ( ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝑊s ( 𝐴𝐵 ) ) = ( 𝑊s ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) )
57 52 54 56 3eqtr4d ( ( ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝑊s 𝐴 ) = ( 𝑊s ( 𝐴𝐵 ) ) )
58 43 57 eqtrd ( ( ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s ( 𝐴𝐵 ) ) )
59 58 ex ( ( Base ‘ ( 𝑊s 𝐴 ) ) ⊆ 𝐵 → ( ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s ( 𝐴𝐵 ) ) ) )
60 4 5 ressid2 ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑋 ) → ( 𝑊s 𝐴 ) = 𝑊 )
61 60 3adant3r3 ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝑊s 𝐴 ) = 𝑊 )
62 61 oveq1d ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s 𝐵 ) )
63 inss2 ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ⊆ ( Base ‘ 𝑊 )
64 simpl ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( Base ‘ 𝑊 ) ⊆ 𝐴 )
65 63 64 sstrid ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐴 )
66 sseqin2 ( ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐴 ↔ ( 𝐴 ∩ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) )
67 65 66 sylib ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝐴 ∩ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) )
68 8 67 eqtr2id ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) = ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) )
69 68 oveq2d ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝑊s ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝑊s ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) )
70 simpr3 ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → 𝐵𝑌 )
71 5 ressinbas ( 𝐵𝑌 → ( 𝑊s 𝐵 ) = ( 𝑊s ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) )
72 70 71 syl ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝑊s 𝐵 ) = ( 𝑊s ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) )
73 simpr2 ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → 𝐴𝑋 )
74 73 33 55 3syl ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝑊s ( 𝐴𝐵 ) ) = ( 𝑊s ( ( 𝐴𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) )
75 69 72 74 3eqtr4d ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( 𝑊s 𝐵 ) = ( 𝑊s ( 𝐴𝐵 ) ) )
76 62 75 eqtrd ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s ( 𝐴𝐵 ) ) )
77 76 ex ( ( Base ‘ 𝑊 ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s ( 𝐴𝐵 ) ) ) )
78 39 59 77 pm2.61ii ( ( 𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌 ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s ( 𝐴𝐵 ) ) )
79 78 3expib ( 𝑊 ∈ V → ( ( 𝐴𝑋𝐵𝑌 ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s ( 𝐴𝐵 ) ) ) )
80 ress0 ( ∅ ↾s 𝐵 ) = ∅
81 reldmress Rel dom ↾s
82 81 ovprc1 ( ¬ 𝑊 ∈ V → ( 𝑊s 𝐴 ) = ∅ )
83 82 oveq1d ( ¬ 𝑊 ∈ V → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( ∅ ↾s 𝐵 ) )
84 81 ovprc1 ( ¬ 𝑊 ∈ V → ( 𝑊s ( 𝐴𝐵 ) ) = ∅ )
85 80 83 84 3eqtr4a ( ¬ 𝑊 ∈ V → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s ( 𝐴𝐵 ) ) )
86 85 a1d ( ¬ 𝑊 ∈ V → ( ( 𝐴𝑋𝐵𝑌 ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s ( 𝐴𝐵 ) ) ) )
87 79 86 pm2.61i ( ( 𝐴𝑋𝐵𝑌 ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s ( 𝐴𝐵 ) ) )