Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) |
2 |
|
simpr1 |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝑊 ∈ V ) |
3 |
|
simpr2 |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐴 ∈ 𝑋 ) |
4 |
|
eqid |
⊢ ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s 𝐴 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
6 |
4 5
|
ressval2 |
⊢ ( ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
7 |
1 2 3 6
|
syl3anc |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
8 |
|
inass |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) = ( 𝐴 ∩ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) |
9 |
|
in12 |
⊢ ( 𝐴 ∩ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝐵 ∩ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) |
10 |
8 9
|
eqtri |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) = ( 𝐵 ∩ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) |
11 |
4 5
|
ressbas |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
12 |
3 11
|
syl |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
13 |
12
|
ineq2d |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐵 ∩ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) |
14 |
10 13
|
eqtr2id |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) = ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) |
15 |
14
|
opeq2d |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 〈 ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) 〉 = 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) |
16 |
7 15
|
oveq12d |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) 〉 ) = ( ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
17 |
|
fvex |
⊢ ( Base ‘ 𝑊 ) ∈ V |
18 |
17
|
inex2 |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ∈ V |
19 |
|
setsabs |
⊢ ( ( 𝑊 ∈ V ∧ ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ∈ V ) → ( ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
20 |
2 18 19
|
sylancl |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
21 |
16 20
|
eqtrd |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) 〉 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
22 |
|
simpll |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ) |
23 |
|
ovexd |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐴 ) ∈ V ) |
24 |
|
simpr3 |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐵 ∈ 𝑌 ) |
25 |
|
eqid |
⊢ ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) |
26 |
|
eqid |
⊢ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) |
27 |
25 26
|
ressval2 |
⊢ ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ↾s 𝐴 ) ∈ V ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( ( 𝑊 ↾s 𝐴 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) 〉 ) ) |
28 |
22 23 24 27
|
syl3anc |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( ( 𝑊 ↾s 𝐴 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) 〉 ) ) |
29 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
30 |
|
sstr |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ ( 𝐴 ∩ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) → ( Base ‘ 𝑊 ) ⊆ 𝐴 ) |
31 |
29 30
|
mpan2 |
⊢ ( ( Base ‘ 𝑊 ) ⊆ ( 𝐴 ∩ 𝐵 ) → ( Base ‘ 𝑊 ) ⊆ 𝐴 ) |
32 |
1 31
|
nsyl |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ¬ ( Base ‘ 𝑊 ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
33 |
|
inex1g |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
34 |
3 33
|
syl |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
35 |
|
eqid |
⊢ ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) |
36 |
35 5
|
ressval2 |
⊢ ( ( ¬ ( Base ‘ 𝑊 ) ⊆ ( 𝐴 ∩ 𝐵 ) ∧ 𝑊 ∈ V ∧ ( 𝐴 ∩ 𝐵 ) ∈ V ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
37 |
32 2 34 36
|
syl3anc |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
38 |
21 28 37
|
3eqtr4d |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
39 |
38
|
exp31 |
⊢ ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 → ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) ) ) |
40 |
|
ovex |
⊢ ( 𝑊 ↾s 𝐴 ) ∈ V |
41 |
25 26
|
ressid2 |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ↾s 𝐴 ) ∈ V ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s 𝐴 ) ) |
42 |
40 41
|
mp3an2 |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s 𝐴 ) ) |
43 |
42
|
3ad2antr3 |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s 𝐴 ) ) |
44 |
|
in32 |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) = ( ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ∩ 𝐵 ) |
45 |
|
simpr2 |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐴 ∈ 𝑋 ) |
46 |
45 11
|
syl |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
47 |
|
simpl |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ) |
48 |
46 47
|
eqsstrd |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐵 ) |
49 |
|
df-ss |
⊢ ( ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐵 ↔ ( ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ∩ 𝐵 ) = ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) |
50 |
48 49
|
sylib |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ∩ 𝐵 ) = ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) |
51 |
44 50
|
eqtr2id |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) |
52 |
51
|
oveq2d |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝑊 ↾s ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) ) |
53 |
5
|
ressinbas |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) ) |
54 |
45 53
|
syl |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) ) |
55 |
5
|
ressinbas |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ V → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 ↾s ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) ) |
56 |
45 33 55
|
3syl |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 ↾s ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) ) |
57 |
52 54 56
|
3eqtr4d |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
58 |
43 57
|
eqtrd |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
59 |
58
|
ex |
⊢ ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) ) |
60 |
4 5
|
ressid2 |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ) → ( 𝑊 ↾s 𝐴 ) = 𝑊 ) |
61 |
60
|
3adant3r3 |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐴 ) = 𝑊 ) |
62 |
61
|
oveq1d |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s 𝐵 ) ) |
63 |
|
inss2 |
⊢ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ⊆ ( Base ‘ 𝑊 ) |
64 |
|
simpl |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( Base ‘ 𝑊 ) ⊆ 𝐴 ) |
65 |
63 64
|
sstrid |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐴 ) |
66 |
|
sseqin2 |
⊢ ( ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐴 ↔ ( 𝐴 ∩ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) |
67 |
65 66
|
sylib |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) |
68 |
8 67
|
eqtr2id |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) |
69 |
68
|
oveq2d |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝑊 ↾s ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) ) |
70 |
|
simpr3 |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐵 ∈ 𝑌 ) |
71 |
5
|
ressinbas |
⊢ ( 𝐵 ∈ 𝑌 → ( 𝑊 ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) ) |
72 |
70 71
|
syl |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) ) |
73 |
|
simpr2 |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐴 ∈ 𝑋 ) |
74 |
73 33 55
|
3syl |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 ↾s ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) ) |
75 |
69 72 74
|
3eqtr4d |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
76 |
62 75
|
eqtrd |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
77 |
76
|
ex |
⊢ ( ( Base ‘ 𝑊 ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) ) |
78 |
39 59 77
|
pm2.61ii |
⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
79 |
78
|
3expib |
⊢ ( 𝑊 ∈ V → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) ) |
80 |
|
ress0 |
⊢ ( ∅ ↾s 𝐵 ) = ∅ |
81 |
|
reldmress |
⊢ Rel dom ↾s |
82 |
81
|
ovprc1 |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s 𝐴 ) = ∅ ) |
83 |
82
|
oveq1d |
⊢ ( ¬ 𝑊 ∈ V → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( ∅ ↾s 𝐵 ) ) |
84 |
81
|
ovprc1 |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ∅ ) |
85 |
80 83 84
|
3eqtr4a |
⊢ ( ¬ 𝑊 ∈ V → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
86 |
85
|
a1d |
⊢ ( ¬ 𝑊 ∈ V → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) ) |
87 |
79 86
|
pm2.61i |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |