| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) |
| 2 |
|
simpr1 |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝑊 ∈ V ) |
| 3 |
|
simpr2 |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐴 ∈ 𝑋 ) |
| 4 |
|
eqid |
⊢ ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s 𝐴 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 6 |
4 5
|
ressval2 |
⊢ ( ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 7 |
1 2 3 6
|
syl3anc |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 8 |
|
inass |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) = ( 𝐴 ∩ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) |
| 9 |
|
in12 |
⊢ ( 𝐴 ∩ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝐵 ∩ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) |
| 10 |
8 9
|
eqtri |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) = ( 𝐵 ∩ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) |
| 11 |
4 5
|
ressbas |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
| 12 |
3 11
|
syl |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
| 13 |
12
|
ineq2d |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐵 ∩ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) |
| 14 |
10 13
|
eqtr2id |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) = ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) |
| 15 |
14
|
opeq2d |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 〈 ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) 〉 = 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) |
| 16 |
7 15
|
oveq12d |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) 〉 ) = ( ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 17 |
|
fvex |
⊢ ( Base ‘ 𝑊 ) ∈ V |
| 18 |
17
|
inex2 |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ∈ V |
| 19 |
|
setsabs |
⊢ ( ( 𝑊 ∈ V ∧ ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ∈ V ) → ( ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 20 |
2 18 19
|
sylancl |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 21 |
16 20
|
eqtrd |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) 〉 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 22 |
|
simpll |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ) |
| 23 |
|
ovexd |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐴 ) ∈ V ) |
| 24 |
|
simpr3 |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐵 ∈ 𝑌 ) |
| 25 |
|
eqid |
⊢ ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) |
| 26 |
|
eqid |
⊢ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) |
| 27 |
25 26
|
ressval2 |
⊢ ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ↾s 𝐴 ) ∈ V ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( ( 𝑊 ↾s 𝐴 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) 〉 ) ) |
| 28 |
22 23 24 27
|
syl3anc |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( ( 𝑊 ↾s 𝐴 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) 〉 ) ) |
| 29 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 30 |
|
sstr |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ ( 𝐴 ∩ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) → ( Base ‘ 𝑊 ) ⊆ 𝐴 ) |
| 31 |
29 30
|
mpan2 |
⊢ ( ( Base ‘ 𝑊 ) ⊆ ( 𝐴 ∩ 𝐵 ) → ( Base ‘ 𝑊 ) ⊆ 𝐴 ) |
| 32 |
1 31
|
nsyl |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ¬ ( Base ‘ 𝑊 ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 33 |
|
inex1g |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
| 34 |
3 33
|
syl |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
| 35 |
|
eqid |
⊢ ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) |
| 36 |
35 5
|
ressval2 |
⊢ ( ( ¬ ( Base ‘ 𝑊 ) ⊆ ( 𝐴 ∩ 𝐵 ) ∧ 𝑊 ∈ V ∧ ( 𝐴 ∩ 𝐵 ) ∈ V ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 37 |
32 2 34 36
|
syl3anc |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 38 |
21 28 37
|
3eqtr4d |
⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 39 |
38
|
exp31 |
⊢ ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 → ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) ) ) |
| 40 |
|
ovex |
⊢ ( 𝑊 ↾s 𝐴 ) ∈ V |
| 41 |
25 26
|
ressid2 |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ↾s 𝐴 ) ∈ V ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s 𝐴 ) ) |
| 42 |
40 41
|
mp3an2 |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s 𝐴 ) ) |
| 43 |
42
|
3ad2antr3 |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s 𝐴 ) ) |
| 44 |
|
in32 |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) = ( ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ∩ 𝐵 ) |
| 45 |
|
simpr2 |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐴 ∈ 𝑋 ) |
| 46 |
45 11
|
syl |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
| 47 |
|
simpl |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ) |
| 48 |
46 47
|
eqsstrd |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐵 ) |
| 49 |
|
dfss2 |
⊢ ( ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐵 ↔ ( ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ∩ 𝐵 ) = ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) |
| 50 |
48 49
|
sylib |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ∩ 𝐵 ) = ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) |
| 51 |
44 50
|
eqtr2id |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) |
| 52 |
51
|
oveq2d |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝑊 ↾s ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 53 |
5
|
ressinbas |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 54 |
45 53
|
syl |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 55 |
5
|
ressinbas |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ V → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 ↾s ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 56 |
45 33 55
|
3syl |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 ↾s ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 57 |
52 54 56
|
3eqtr4d |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 58 |
43 57
|
eqtrd |
⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 59 |
58
|
ex |
⊢ ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 60 |
4 5
|
ressid2 |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ) → ( 𝑊 ↾s 𝐴 ) = 𝑊 ) |
| 61 |
60
|
3adant3r3 |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐴 ) = 𝑊 ) |
| 62 |
61
|
oveq1d |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s 𝐵 ) ) |
| 63 |
|
inss2 |
⊢ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ⊆ ( Base ‘ 𝑊 ) |
| 64 |
|
simpl |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( Base ‘ 𝑊 ) ⊆ 𝐴 ) |
| 65 |
63 64
|
sstrid |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐴 ) |
| 66 |
|
sseqin2 |
⊢ ( ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐴 ↔ ( 𝐴 ∩ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) |
| 67 |
65 66
|
sylib |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) |
| 68 |
8 67
|
eqtr2id |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) |
| 69 |
68
|
oveq2d |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝑊 ↾s ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 70 |
|
simpr3 |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐵 ∈ 𝑌 ) |
| 71 |
5
|
ressinbas |
⊢ ( 𝐵 ∈ 𝑌 → ( 𝑊 ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 72 |
70 71
|
syl |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 73 |
|
simpr2 |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐴 ∈ 𝑋 ) |
| 74 |
73 33 55
|
3syl |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 ↾s ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 75 |
69 72 74
|
3eqtr4d |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 76 |
62 75
|
eqtrd |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 77 |
76
|
ex |
⊢ ( ( Base ‘ 𝑊 ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 78 |
39 59 77
|
pm2.61ii |
⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 79 |
78
|
3expib |
⊢ ( 𝑊 ∈ V → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 80 |
|
ress0 |
⊢ ( ∅ ↾s 𝐵 ) = ∅ |
| 81 |
|
reldmress |
⊢ Rel dom ↾s |
| 82 |
81
|
ovprc1 |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s 𝐴 ) = ∅ ) |
| 83 |
82
|
oveq1d |
⊢ ( ¬ 𝑊 ∈ V → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( ∅ ↾s 𝐵 ) ) |
| 84 |
81
|
ovprc1 |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ∅ ) |
| 85 |
80 83 84
|
3eqtr4a |
⊢ ( ¬ 𝑊 ∈ V → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 86 |
85
|
a1d |
⊢ ( ¬ 𝑊 ∈ V → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 87 |
79 86
|
pm2.61i |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |