Metamath Proof Explorer


Theorem resssca

Description: Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypotheses resssca.1 𝐻 = ( 𝐺s 𝐴 )
resssca.2 𝐹 = ( Scalar ‘ 𝐺 )
Assertion resssca ( 𝐴𝑉𝐹 = ( Scalar ‘ 𝐻 ) )

Proof

Step Hyp Ref Expression
1 resssca.1 𝐻 = ( 𝐺s 𝐴 )
2 resssca.2 𝐹 = ( Scalar ‘ 𝐺 )
3 scaid Scalar = Slot ( Scalar ‘ ndx )
4 scandxnbasendx ( Scalar ‘ ndx ) ≠ ( Base ‘ ndx )
5 1 2 3 4 resseqnbas ( 𝐴𝑉𝐹 = ( Scalar ‘ 𝐻 ) )