Metamath Proof Explorer


Theorem resssra

Description: The subring algebra of a restricted structure is the restriction of the subring algebra. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses resssra.a 𝐴 = ( Base ‘ 𝑅 )
resssra.s 𝑆 = ( 𝑅s 𝐵 )
resssra.b ( 𝜑𝐵𝐴 )
resssra.c ( 𝜑𝐶𝐵 )
resssra.r ( 𝜑𝑅𝑉 )
Assertion resssra ( 𝜑 → ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐵 ) )

Proof

Step Hyp Ref Expression
1 resssra.a 𝐴 = ( Base ‘ 𝑅 )
2 resssra.s 𝑆 = ( 𝑅s 𝐵 )
3 resssra.b ( 𝜑𝐵𝐴 )
4 resssra.c ( 𝜑𝐶𝐵 )
5 resssra.r ( 𝜑𝑅𝑉 )
6 eqidd ( 𝜑 → ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) )
7 4 3 sstrd ( 𝜑𝐶𝐴 )
8 7 1 sseqtrdi ( 𝜑𝐶 ⊆ ( Base ‘ 𝑅 ) )
9 6 8 srabase ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) )
10 1 9 eqtrid ( 𝜑𝐴 = ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) )
11 10 oveq2d ( 𝜑 → ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐴 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) ) )
12 11 adantr ( ( 𝜑𝐴𝐵 ) → ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐴 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) ) )
13 simpr ( ( 𝜑𝐴𝐵 ) → 𝐴𝐵 )
14 3 adantr ( ( 𝜑𝐴𝐵 ) → 𝐵𝐴 )
15 13 14 eqssd ( ( 𝜑𝐴𝐵 ) → 𝐴 = 𝐵 )
16 15 oveq2d ( ( 𝜑𝐴𝐵 ) → ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐴 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐵 ) )
17 fvex ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ∈ V
18 eqid ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) = ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) )
19 18 ressid ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ∈ V → ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) ) = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) )
20 17 19 mp1i ( ( 𝜑𝐴𝐵 ) → ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) ) = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) )
21 12 16 20 3eqtr3d ( ( 𝜑𝐴𝐵 ) → ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐵 ) = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) )
22 1 oveq2i ( 𝑅s 𝐴 ) = ( 𝑅s ( Base ‘ 𝑅 ) )
23 5 elexd ( 𝜑𝑅 ∈ V )
24 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
25 24 ressid ( 𝑅 ∈ V → ( 𝑅s ( Base ‘ 𝑅 ) ) = 𝑅 )
26 23 25 syl ( 𝜑 → ( 𝑅s ( Base ‘ 𝑅 ) ) = 𝑅 )
27 22 26 eqtrid ( 𝜑 → ( 𝑅s 𝐴 ) = 𝑅 )
28 27 adantr ( ( 𝜑𝐴𝐵 ) → ( 𝑅s 𝐴 ) = 𝑅 )
29 15 oveq2d ( ( 𝜑𝐴𝐵 ) → ( 𝑅s 𝐴 ) = ( 𝑅s 𝐵 ) )
30 29 2 eqtr4di ( ( 𝜑𝐴𝐵 ) → ( 𝑅s 𝐴 ) = 𝑆 )
31 28 30 eqtr3d ( ( 𝜑𝐴𝐵 ) → 𝑅 = 𝑆 )
32 31 fveq2d ( ( 𝜑𝐴𝐵 ) → ( subringAlg ‘ 𝑅 ) = ( subringAlg ‘ 𝑆 ) )
33 32 fveq1d ( ( 𝜑𝐴𝐵 ) → ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) = ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) )
34 21 33 eqtr2d ( ( 𝜑𝐴𝐵 ) → ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐵 ) )
35 simpr ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ¬ 𝐴𝐵 )
36 23 adantr ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → 𝑅 ∈ V )
37 1 fvexi 𝐴 ∈ V
38 37 a1i ( 𝜑𝐴 ∈ V )
39 38 3 ssexd ( 𝜑𝐵 ∈ V )
40 39 adantr ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → 𝐵 ∈ V )
41 2 1 ressval2 ( ( ¬ 𝐴𝐵𝑅 ∈ V ∧ 𝐵 ∈ V ) → 𝑆 = ( 𝑅 sSet ⟨ ( Base ‘ ndx ) , ( 𝐵𝐴 ) ⟩ ) )
42 35 36 40 41 syl3anc ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → 𝑆 = ( 𝑅 sSet ⟨ ( Base ‘ ndx ) , ( 𝐵𝐴 ) ⟩ ) )
43 dfss2 ( 𝐵𝐴 ↔ ( 𝐵𝐴 ) = 𝐵 )
44 3 43 sylib ( 𝜑 → ( 𝐵𝐴 ) = 𝐵 )
45 44 opeq2d ( 𝜑 → ⟨ ( Base ‘ ndx ) , ( 𝐵𝐴 ) ⟩ = ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ )
46 45 oveq2d ( 𝜑 → ( 𝑅 sSet ⟨ ( Base ‘ ndx ) , ( 𝐵𝐴 ) ⟩ ) = ( 𝑅 sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) )
47 46 adantr ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( 𝑅 sSet ⟨ ( Base ‘ ndx ) , ( 𝐵𝐴 ) ⟩ ) = ( 𝑅 sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) )
48 42 47 eqtrd ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → 𝑆 = ( 𝑅 sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) )
49 2 oveq1i ( 𝑆s 𝐶 ) = ( ( 𝑅s 𝐵 ) ↾s 𝐶 )
50 ressabs ( ( 𝐵 ∈ V ∧ 𝐶𝐵 ) → ( ( 𝑅s 𝐵 ) ↾s 𝐶 ) = ( 𝑅s 𝐶 ) )
51 39 4 50 syl2anc ( 𝜑 → ( ( 𝑅s 𝐵 ) ↾s 𝐶 ) = ( 𝑅s 𝐶 ) )
52 49 51 eqtrid ( 𝜑 → ( 𝑆s 𝐶 ) = ( 𝑅s 𝐶 ) )
53 52 opeq2d ( 𝜑 → ⟨ ( Scalar ‘ ndx ) , ( 𝑆s 𝐶 ) ⟩ = ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ )
54 53 adantr ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ⟨ ( Scalar ‘ ndx ) , ( 𝑆s 𝐶 ) ⟩ = ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ )
55 48 54 oveq12d ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( 𝑆 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑆s 𝐶 ) ⟩ ) = ( ( 𝑅 sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) )
56 scandxnbasendx ( Scalar ‘ ndx ) ≠ ( Base ‘ ndx )
57 56 a1i ( 𝜑 → ( Scalar ‘ ndx ) ≠ ( Base ‘ ndx ) )
58 ovexd ( 𝜑 → ( 𝑅s 𝐶 ) ∈ V )
59 fvex ( Scalar ‘ ndx ) ∈ V
60 fvex ( Base ‘ ndx ) ∈ V
61 59 60 setscom ( ( ( 𝑅 ∈ V ∧ ( Scalar ‘ ndx ) ≠ ( Base ‘ ndx ) ) ∧ ( ( 𝑅s 𝐶 ) ∈ V ∧ 𝐵 ∈ V ) ) → ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) = ( ( 𝑅 sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) )
62 23 57 58 39 61 syl22anc ( 𝜑 → ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) = ( ( 𝑅 sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) )
63 62 adantr ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) = ( ( 𝑅 sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) )
64 55 63 eqtr4d ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( 𝑆 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑆s 𝐶 ) ⟩ ) = ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) )
65 eqid ( .r𝑅 ) = ( .r𝑅 )
66 2 65 ressmulr ( 𝐵 ∈ V → ( .r𝑅 ) = ( .r𝑆 ) )
67 39 66 syl ( 𝜑 → ( .r𝑅 ) = ( .r𝑆 ) )
68 67 eqcomd ( 𝜑 → ( .r𝑆 ) = ( .r𝑅 ) )
69 68 opeq2d ( 𝜑 → ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑆 ) ⟩ = ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ )
70 69 adantr ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑆 ) ⟩ = ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ )
71 64 70 oveq12d ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( ( 𝑆 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑆s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑆 ) ⟩ ) = ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) )
72 ovexd ( 𝜑 → ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) ∈ V )
73 vscandxnbasendx ( ·𝑠 ‘ ndx ) ≠ ( Base ‘ ndx )
74 73 a1i ( 𝜑 → ( ·𝑠 ‘ ndx ) ≠ ( Base ‘ ndx ) )
75 fvexd ( 𝜑 → ( .r𝑅 ) ∈ V )
76 fvex ( ·𝑠 ‘ ndx ) ∈ V
77 76 60 setscom ( ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) ∈ V ∧ ( ·𝑠 ‘ ndx ) ≠ ( Base ‘ ndx ) ) ∧ ( ( .r𝑅 ) ∈ V ∧ 𝐵 ∈ V ) ) → ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) = ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) )
78 72 74 75 39 77 syl22anc ( 𝜑 → ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) = ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) )
79 78 adantr ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) = ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) )
80 71 79 eqtr4d ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( ( 𝑆 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑆s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑆 ) ⟩ ) = ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) )
81 68 opeq2d ( 𝜑 → ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑆 ) ⟩ = ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑅 ) ⟩ )
82 81 adantr ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑆 ) ⟩ = ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑅 ) ⟩ )
83 80 82 oveq12d ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( ( ( 𝑆 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑆s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑆 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑆 ) ⟩ ) = ( ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑅 ) ⟩ ) )
84 ovexd ( 𝜑 → ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) ∈ V )
85 ipndxnbasendx ( ·𝑖 ‘ ndx ) ≠ ( Base ‘ ndx )
86 85 a1i ( 𝜑 → ( ·𝑖 ‘ ndx ) ≠ ( Base ‘ ndx ) )
87 fvex ( ·𝑖 ‘ ndx ) ∈ V
88 87 60 setscom ( ( ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) ∈ V ∧ ( ·𝑖 ‘ ndx ) ≠ ( Base ‘ ndx ) ) ∧ ( ( .r𝑅 ) ∈ V ∧ 𝐵 ∈ V ) ) → ( ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) = ( ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑅 ) ⟩ ) )
89 84 86 75 39 88 syl22anc ( 𝜑 → ( ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) = ( ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑅 ) ⟩ ) )
90 89 adantr ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) = ( ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑅 ) ⟩ ) )
91 83 90 eqtr4d ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( ( ( 𝑆 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑆s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑆 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑆 ) ⟩ ) = ( ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) )
92 2 ovexi 𝑆 ∈ V
93 2 1 ressbas2 ( 𝐵𝐴𝐵 = ( Base ‘ 𝑆 ) )
94 3 93 syl ( 𝜑𝐵 = ( Base ‘ 𝑆 ) )
95 4 94 sseqtrd ( 𝜑𝐶 ⊆ ( Base ‘ 𝑆 ) )
96 95 adantr ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → 𝐶 ⊆ ( Base ‘ 𝑆 ) )
97 sraval ( ( 𝑆 ∈ V ∧ 𝐶 ⊆ ( Base ‘ 𝑆 ) ) → ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) = ( ( ( 𝑆 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑆s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑆 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑆 ) ⟩ ) )
98 92 96 97 sylancr ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) = ( ( ( 𝑆 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑆s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑆 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑆 ) ⟩ ) )
99 10 adantr ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → 𝐴 = ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) )
100 99 sseq1d ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( 𝐴𝐵 ↔ ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) ⊆ 𝐵 ) )
101 35 100 mtbid ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ¬ ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) ⊆ 𝐵 )
102 fvexd ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ∈ V )
103 eqid ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐵 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐵 )
104 103 18 ressval2 ( ( ¬ ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) ⊆ 𝐵 ∧ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ∈ V ∧ 𝐵 ∈ V ) → ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐵 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) sSet ⟨ ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) ) ⟩ ) )
105 101 102 40 104 syl3anc ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐵 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) sSet ⟨ ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) ) ⟩ ) )
106 10 ineq2d ( 𝜑 → ( 𝐵𝐴 ) = ( 𝐵 ∩ ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) ) )
107 106 44 eqtr3d ( 𝜑 → ( 𝐵 ∩ ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) ) = 𝐵 )
108 107 opeq2d ( 𝜑 → ⟨ ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) ) ⟩ = ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ )
109 108 oveq2d ( 𝜑 → ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) sSet ⟨ ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) ) ⟩ ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) )
110 109 adantr ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) sSet ⟨ ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) ) ⟩ ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) )
111 sraval ( ( 𝑅𝑉𝐶 ⊆ ( Base ‘ 𝑅 ) ) → ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) = ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑅 ) ⟩ ) )
112 5 8 111 syl2anc ( 𝜑 → ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) = ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑅 ) ⟩ ) )
113 112 oveq1d ( 𝜑 → ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) = ( ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) )
114 113 adantr ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) = ( ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) )
115 105 110 114 3eqtrd ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐵 ) = ( ( ( ( 𝑅 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑅s 𝐶 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑅 ) ⟩ ) sSet ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ) )
116 91 98 115 3eqtr4d ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐵 ) )
117 34 116 pm2.61dan ( 𝜑 → ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐵 ) )