Metamath Proof Explorer
Description: *r is unaffected by restriction. (Contributed by Mario Carneiro, 9-Oct-2015)
|
|
Ref |
Expression |
|
Hypotheses |
ressmulr.1 |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
|
|
ressstarv.2 |
⊢ ∗ = ( *𝑟 ‘ 𝑅 ) |
|
Assertion |
ressstarv |
⊢ ( 𝐴 ∈ 𝑉 → ∗ = ( *𝑟 ‘ 𝑆 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ressmulr.1 |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
2 |
|
ressstarv.2 |
⊢ ∗ = ( *𝑟 ‘ 𝑅 ) |
3 |
|
starvid |
⊢ *𝑟 = Slot ( *𝑟 ‘ ndx ) |
4 |
|
starvndxnbasendx |
⊢ ( *𝑟 ‘ ndx ) ≠ ( Base ‘ ndx ) |
5 |
1 2 3 4
|
resseqnbas |
⊢ ( 𝐴 ∈ 𝑉 → ∗ = ( *𝑟 ‘ 𝑆 ) ) |