Metamath Proof Explorer


Theorem resssxp

Description: If the R -image of a class A is a subclass of B , then the restriction of R to A is a subset of the Cartesian product of A and B . (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion resssxp ( ( 𝑅𝐴 ) ⊆ 𝐵 ↔ ( 𝑅𝐴 ) ⊆ ( 𝐴 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-ima ( 𝑅𝐴 ) = ran ( 𝑅𝐴 )
2 1 sseq1i ( ( 𝑅𝐴 ) ⊆ 𝐵 ↔ ran ( 𝑅𝐴 ) ⊆ 𝐵 )
3 dmres dom ( 𝑅𝐴 ) = ( 𝐴 ∩ dom 𝑅 )
4 inss1 ( 𝐴 ∩ dom 𝑅 ) ⊆ 𝐴
5 3 4 eqsstri dom ( 𝑅𝐴 ) ⊆ 𝐴
6 5 biantrur ( ran ( 𝑅𝐴 ) ⊆ 𝐵 ↔ ( dom ( 𝑅𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅𝐴 ) ⊆ 𝐵 ) )
7 relres Rel ( 𝑅𝐴 )
8 relssdmrn ( Rel ( 𝑅𝐴 ) → ( 𝑅𝐴 ) ⊆ ( dom ( 𝑅𝐴 ) × ran ( 𝑅𝐴 ) ) )
9 7 8 ax-mp ( 𝑅𝐴 ) ⊆ ( dom ( 𝑅𝐴 ) × ran ( 𝑅𝐴 ) )
10 xpss12 ( ( dom ( 𝑅𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅𝐴 ) ⊆ 𝐵 ) → ( dom ( 𝑅𝐴 ) × ran ( 𝑅𝐴 ) ) ⊆ ( 𝐴 × 𝐵 ) )
11 9 10 sstrid ( ( dom ( 𝑅𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅𝐴 ) ⊆ 𝐵 ) → ( 𝑅𝐴 ) ⊆ ( 𝐴 × 𝐵 ) )
12 dmss ( ( 𝑅𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → dom ( 𝑅𝐴 ) ⊆ dom ( 𝐴 × 𝐵 ) )
13 dmxpss dom ( 𝐴 × 𝐵 ) ⊆ 𝐴
14 12 13 sstrdi ( ( 𝑅𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → dom ( 𝑅𝐴 ) ⊆ 𝐴 )
15 rnss ( ( 𝑅𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → ran ( 𝑅𝐴 ) ⊆ ran ( 𝐴 × 𝐵 ) )
16 rnxpss ran ( 𝐴 × 𝐵 ) ⊆ 𝐵
17 15 16 sstrdi ( ( 𝑅𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → ran ( 𝑅𝐴 ) ⊆ 𝐵 )
18 14 17 jca ( ( 𝑅𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → ( dom ( 𝑅𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅𝐴 ) ⊆ 𝐵 ) )
19 11 18 impbii ( ( dom ( 𝑅𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅𝐴 ) ⊆ 𝐵 ) ↔ ( 𝑅𝐴 ) ⊆ ( 𝐴 × 𝐵 ) )
20 2 6 19 3bitri ( ( 𝑅𝐴 ) ⊆ 𝐵 ↔ ( 𝑅𝐴 ) ⊆ ( 𝐴 × 𝐵 ) )