| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ima |
⊢ ( 𝑅 “ 𝐴 ) = ran ( 𝑅 ↾ 𝐴 ) |
| 2 |
1
|
sseq1i |
⊢ ( ( 𝑅 “ 𝐴 ) ⊆ 𝐵 ↔ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) |
| 3 |
|
dmres |
⊢ dom ( 𝑅 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝑅 ) |
| 4 |
|
inss1 |
⊢ ( 𝐴 ∩ dom 𝑅 ) ⊆ 𝐴 |
| 5 |
3 4
|
eqsstri |
⊢ dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 |
| 6 |
5
|
biantrur |
⊢ ( ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ↔ ( dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) ) |
| 7 |
|
relres |
⊢ Rel ( 𝑅 ↾ 𝐴 ) |
| 8 |
|
relssdmrn |
⊢ ( Rel ( 𝑅 ↾ 𝐴 ) → ( 𝑅 ↾ 𝐴 ) ⊆ ( dom ( 𝑅 ↾ 𝐴 ) × ran ( 𝑅 ↾ 𝐴 ) ) ) |
| 9 |
7 8
|
ax-mp |
⊢ ( 𝑅 ↾ 𝐴 ) ⊆ ( dom ( 𝑅 ↾ 𝐴 ) × ran ( 𝑅 ↾ 𝐴 ) ) |
| 10 |
|
xpss12 |
⊢ ( ( dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) → ( dom ( 𝑅 ↾ 𝐴 ) × ran ( 𝑅 ↾ 𝐴 ) ) ⊆ ( 𝐴 × 𝐵 ) ) |
| 11 |
9 10
|
sstrid |
⊢ ( ( dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) → ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) ) |
| 12 |
|
dmss |
⊢ ( ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → dom ( 𝑅 ↾ 𝐴 ) ⊆ dom ( 𝐴 × 𝐵 ) ) |
| 13 |
|
dmxpss |
⊢ dom ( 𝐴 × 𝐵 ) ⊆ 𝐴 |
| 14 |
12 13
|
sstrdi |
⊢ ( ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ) |
| 15 |
|
rnss |
⊢ ( ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → ran ( 𝑅 ↾ 𝐴 ) ⊆ ran ( 𝐴 × 𝐵 ) ) |
| 16 |
|
rnxpss |
⊢ ran ( 𝐴 × 𝐵 ) ⊆ 𝐵 |
| 17 |
15 16
|
sstrdi |
⊢ ( ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) |
| 18 |
14 17
|
jca |
⊢ ( ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → ( dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) ) |
| 19 |
11 18
|
impbii |
⊢ ( ( dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) ↔ ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) ) |
| 20 |
2 6 19
|
3bitri |
⊢ ( ( 𝑅 “ 𝐴 ) ⊆ 𝐵 ↔ ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) ) |