Step |
Hyp |
Ref |
Expression |
1 |
|
df-ima |
⊢ ( 𝑅 “ 𝐴 ) = ran ( 𝑅 ↾ 𝐴 ) |
2 |
1
|
sseq1i |
⊢ ( ( 𝑅 “ 𝐴 ) ⊆ 𝐵 ↔ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) |
3 |
|
dmres |
⊢ dom ( 𝑅 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝑅 ) |
4 |
|
inss1 |
⊢ ( 𝐴 ∩ dom 𝑅 ) ⊆ 𝐴 |
5 |
3 4
|
eqsstri |
⊢ dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 |
6 |
5
|
biantrur |
⊢ ( ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ↔ ( dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) ) |
7 |
|
relres |
⊢ Rel ( 𝑅 ↾ 𝐴 ) |
8 |
|
relssdmrn |
⊢ ( Rel ( 𝑅 ↾ 𝐴 ) → ( 𝑅 ↾ 𝐴 ) ⊆ ( dom ( 𝑅 ↾ 𝐴 ) × ran ( 𝑅 ↾ 𝐴 ) ) ) |
9 |
7 8
|
ax-mp |
⊢ ( 𝑅 ↾ 𝐴 ) ⊆ ( dom ( 𝑅 ↾ 𝐴 ) × ran ( 𝑅 ↾ 𝐴 ) ) |
10 |
|
xpss12 |
⊢ ( ( dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) → ( dom ( 𝑅 ↾ 𝐴 ) × ran ( 𝑅 ↾ 𝐴 ) ) ⊆ ( 𝐴 × 𝐵 ) ) |
11 |
9 10
|
sstrid |
⊢ ( ( dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) → ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) ) |
12 |
|
dmss |
⊢ ( ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → dom ( 𝑅 ↾ 𝐴 ) ⊆ dom ( 𝐴 × 𝐵 ) ) |
13 |
|
dmxpss |
⊢ dom ( 𝐴 × 𝐵 ) ⊆ 𝐴 |
14 |
12 13
|
sstrdi |
⊢ ( ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ) |
15 |
|
rnss |
⊢ ( ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → ran ( 𝑅 ↾ 𝐴 ) ⊆ ran ( 𝐴 × 𝐵 ) ) |
16 |
|
rnxpss |
⊢ ran ( 𝐴 × 𝐵 ) ⊆ 𝐵 |
17 |
15 16
|
sstrdi |
⊢ ( ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) |
18 |
14 17
|
jca |
⊢ ( ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → ( dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) ) |
19 |
11 18
|
impbii |
⊢ ( ( dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) ↔ ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) ) |
20 |
2 6 19
|
3bitri |
⊢ ( ( 𝑅 “ 𝐴 ) ⊆ 𝐵 ↔ ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) ) |