| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resstopn.1 |
⊢ 𝐻 = ( 𝐾 ↾s 𝐴 ) |
| 2 |
|
resstopn.2 |
⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) |
| 3 |
|
fvex |
⊢ ( TopSet ‘ 𝐾 ) ∈ V |
| 4 |
|
fvex |
⊢ ( Base ‘ 𝐾 ) ∈ V |
| 5 |
|
restco |
⊢ ( ( ( TopSet ‘ 𝐾 ) ∈ V ∧ ( Base ‘ 𝐾 ) ∈ V ∧ 𝐴 ∈ V ) → ( ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) ↾t 𝐴 ) = ( ( TopSet ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 6 |
3 4 5
|
mp3an12 |
⊢ ( 𝐴 ∈ V → ( ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) ↾t 𝐴 ) = ( ( TopSet ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 7 |
|
eqid |
⊢ ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐾 ) |
| 8 |
1 7
|
resstset |
⊢ ( 𝐴 ∈ V → ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐻 ) ) |
| 9 |
|
incom |
⊢ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 11 |
1 10
|
ressbas |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ 𝐻 ) ) |
| 12 |
9 11
|
eqtrid |
⊢ ( 𝐴 ∈ V → ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( Base ‘ 𝐻 ) ) |
| 13 |
8 12
|
oveq12d |
⊢ ( 𝐴 ∈ V → ( ( TopSet ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ( TopSet ‘ 𝐻 ) ↾t ( Base ‘ 𝐻 ) ) ) |
| 14 |
6 13
|
eqtrd |
⊢ ( 𝐴 ∈ V → ( ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) ↾t 𝐴 ) = ( ( TopSet ‘ 𝐻 ) ↾t ( Base ‘ 𝐻 ) ) ) |
| 15 |
10 7
|
topnval |
⊢ ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) = ( TopOpen ‘ 𝐾 ) |
| 16 |
15 2
|
eqtr4i |
⊢ ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) = 𝐽 |
| 17 |
16
|
oveq1i |
⊢ ( ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) ↾t 𝐴 ) = ( 𝐽 ↾t 𝐴 ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 19 |
|
eqid |
⊢ ( TopSet ‘ 𝐻 ) = ( TopSet ‘ 𝐻 ) |
| 20 |
18 19
|
topnval |
⊢ ( ( TopSet ‘ 𝐻 ) ↾t ( Base ‘ 𝐻 ) ) = ( TopOpen ‘ 𝐻 ) |
| 21 |
14 17 20
|
3eqtr3g |
⊢ ( 𝐴 ∈ V → ( 𝐽 ↾t 𝐴 ) = ( TopOpen ‘ 𝐻 ) ) |
| 22 |
|
simpr |
⊢ ( ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → 𝐴 ∈ V ) |
| 23 |
|
restfn |
⊢ ↾t Fn ( V × V ) |
| 24 |
23
|
fndmi |
⊢ dom ↾t = ( V × V ) |
| 25 |
24
|
ndmov |
⊢ ( ¬ ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐽 ↾t 𝐴 ) = ∅ ) |
| 26 |
22 25
|
nsyl5 |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐽 ↾t 𝐴 ) = ∅ ) |
| 27 |
|
reldmress |
⊢ Rel dom ↾s |
| 28 |
27
|
ovprc2 |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐾 ↾s 𝐴 ) = ∅ ) |
| 29 |
1 28
|
eqtrid |
⊢ ( ¬ 𝐴 ∈ V → 𝐻 = ∅ ) |
| 30 |
29
|
fveq2d |
⊢ ( ¬ 𝐴 ∈ V → ( TopSet ‘ 𝐻 ) = ( TopSet ‘ ∅ ) ) |
| 31 |
|
tsetid |
⊢ TopSet = Slot ( TopSet ‘ ndx ) |
| 32 |
31
|
str0 |
⊢ ∅ = ( TopSet ‘ ∅ ) |
| 33 |
30 32
|
eqtr4di |
⊢ ( ¬ 𝐴 ∈ V → ( TopSet ‘ 𝐻 ) = ∅ ) |
| 34 |
33
|
oveq1d |
⊢ ( ¬ 𝐴 ∈ V → ( ( TopSet ‘ 𝐻 ) ↾t ( Base ‘ 𝐻 ) ) = ( ∅ ↾t ( Base ‘ 𝐻 ) ) ) |
| 35 |
|
0rest |
⊢ ( ∅ ↾t ( Base ‘ 𝐻 ) ) = ∅ |
| 36 |
34 20 35
|
3eqtr3g |
⊢ ( ¬ 𝐴 ∈ V → ( TopOpen ‘ 𝐻 ) = ∅ ) |
| 37 |
26 36
|
eqtr4d |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐽 ↾t 𝐴 ) = ( TopOpen ‘ 𝐻 ) ) |
| 38 |
21 37
|
pm2.61i |
⊢ ( 𝐽 ↾t 𝐴 ) = ( TopOpen ‘ 𝐻 ) |