Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
2 |
|
eqid |
⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) |
3 |
1 2
|
istps |
⊢ ( 𝐾 ∈ TopSp ↔ ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
4 |
|
resttopon2 |
⊢ ( ( ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) ∈ ( TopOn ‘ ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) ) ) |
5 |
3 4
|
sylanb |
⊢ ( ( 𝐾 ∈ TopSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) ∈ ( TopOn ‘ ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) ) ) |
6 |
|
eqid |
⊢ ( 𝐾 ↾s 𝐴 ) = ( 𝐾 ↾s 𝐴 ) |
7 |
6 1
|
ressbas |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐾 ∈ TopSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝐾 ∈ TopSp ∧ 𝐴 ∈ 𝑉 ) → ( TopOn ‘ ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) ) = ( TopOn ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
10 |
5 9
|
eleqtrd |
⊢ ( ( 𝐾 ∈ TopSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) ∈ ( TopOn ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
11 |
|
eqid |
⊢ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) |
12 |
6 2
|
resstopn |
⊢ ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( TopOpen ‘ ( 𝐾 ↾s 𝐴 ) ) |
13 |
11 12
|
istps |
⊢ ( ( 𝐾 ↾s 𝐴 ) ∈ TopSp ↔ ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) ∈ ( TopOn ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
14 |
10 13
|
sylibr |
⊢ ( ( 𝐾 ∈ TopSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐾 ↾s 𝐴 ) ∈ TopSp ) |