| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ ( TopOpen ‘ 𝐾 )  =  ( TopOpen ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							istps | 
							⊢ ( 𝐾  ∈  TopSp  ↔  ( TopOpen ‘ 𝐾 )  ∈  ( TopOn ‘ ( Base ‘ 𝐾 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							resttopon2 | 
							⊢ ( ( ( TopOpen ‘ 𝐾 )  ∈  ( TopOn ‘ ( Base ‘ 𝐾 ) )  ∧  𝐴  ∈  𝑉 )  →  ( ( TopOpen ‘ 𝐾 )  ↾t  𝐴 )  ∈  ( TopOn ‘ ( 𝐴  ∩  ( Base ‘ 𝐾 ) ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylanb | 
							⊢ ( ( 𝐾  ∈  TopSp  ∧  𝐴  ∈  𝑉 )  →  ( ( TopOpen ‘ 𝐾 )  ↾t  𝐴 )  ∈  ( TopOn ‘ ( 𝐴  ∩  ( Base ‘ 𝐾 ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐾  ↾s  𝐴 )  =  ( 𝐾  ↾s  𝐴 )  | 
						
						
							| 7 | 
							
								6 1
							 | 
							ressbas | 
							⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ∩  ( Base ‘ 𝐾 ) )  =  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							⊢ ( ( 𝐾  ∈  TopSp  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ∩  ( Base ‘ 𝐾 ) )  =  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							fveq2d | 
							⊢ ( ( 𝐾  ∈  TopSp  ∧  𝐴  ∈  𝑉 )  →  ( TopOn ‘ ( 𝐴  ∩  ( Base ‘ 𝐾 ) ) )  =  ( TopOn ‘ ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							eleqtrd | 
							⊢ ( ( 𝐾  ∈  TopSp  ∧  𝐴  ∈  𝑉 )  →  ( ( TopOpen ‘ 𝐾 )  ↾t  𝐴 )  ∈  ( TopOn ‘ ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  =  ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  | 
						
						
							| 12 | 
							
								6 2
							 | 
							resstopn | 
							⊢ ( ( TopOpen ‘ 𝐾 )  ↾t  𝐴 )  =  ( TopOpen ‘ ( 𝐾  ↾s  𝐴 ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							istps | 
							⊢ ( ( 𝐾  ↾s  𝐴 )  ∈  TopSp  ↔  ( ( TopOpen ‘ 𝐾 )  ↾t  𝐴 )  ∈  ( TopOn ‘ ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							sylibr | 
							⊢ ( ( 𝐾  ∈  TopSp  ∧  𝐴  ∈  𝑉 )  →  ( 𝐾  ↾s  𝐴 )  ∈  TopSp )  |