Metamath Proof Explorer


Theorem ressucdifsn

Description: The difference between restrictions to the successor and the singleton of a class is the restriction to the class. (Contributed by Peter Mazsa, 20-Sep-2024)

Ref Expression
Assertion ressucdifsn ( ( 𝑅 ↾ suc 𝐴 ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) = ( 𝑅𝐴 )

Proof

Step Hyp Ref Expression
1 df-suc suc 𝐴 = ( 𝐴 ∪ { 𝐴 } )
2 1 reseq2i ( 𝑅 ↾ suc 𝐴 ) = ( 𝑅 ↾ ( 𝐴 ∪ { 𝐴 } ) )
3 2 difeq1i ( ( 𝑅 ↾ suc 𝐴 ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) = ( ( 𝑅 ↾ ( 𝐴 ∪ { 𝐴 } ) ) ∖ ( 𝑅 ↾ { 𝐴 } ) )
4 ressucdifsn2 ( ( 𝑅 ↾ ( 𝐴 ∪ { 𝐴 } ) ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) = ( 𝑅𝐴 )
5 3 4 eqtri ( ( 𝑅 ↾ suc 𝐴 ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) = ( 𝑅𝐴 )