Metamath Proof Explorer


Theorem ressucdifsn2

Description: The difference between restrictions to the successor and the singleton of a class is the restriction to the class, see ressucdifsn . (Contributed by Peter Mazsa, 24-Jul-2024)

Ref Expression
Assertion ressucdifsn2 ( ( 𝑅 ↾ ( 𝐴 ∪ { 𝐴 } ) ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) = ( 𝑅𝐴 )

Proof

Step Hyp Ref Expression
1 disjcsn ( 𝐴 ∩ { 𝐴 } ) = ∅
2 disjresundif ( ( 𝐴 ∩ { 𝐴 } ) = ∅ → ( ( 𝑅 ↾ ( 𝐴 ∪ { 𝐴 } ) ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) = ( 𝑅𝐴 ) )
3 1 2 ax-mp ( ( 𝑅 ↾ ( 𝐴 ∪ { 𝐴 } ) ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) = ( 𝑅𝐴 )