Step |
Hyp |
Ref |
Expression |
1 |
|
ressuppfi.b |
⊢ ( 𝜑 → ( dom 𝐹 ∖ 𝐵 ) ∈ Fin ) |
2 |
|
ressuppfi.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) |
3 |
|
ressuppfi.g |
⊢ ( 𝜑 → 𝐺 = ( 𝐹 ↾ 𝐵 ) ) |
4 |
|
ressuppfi.s |
⊢ ( 𝜑 → ( 𝐺 supp 𝑍 ) ∈ Fin ) |
5 |
|
ressuppfi.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
6 |
3
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) = 𝐺 ) |
7 |
6
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) = ( 𝐺 supp 𝑍 ) ) |
8 |
7 4
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∈ Fin ) |
9 |
|
unfi |
⊢ ( ( ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∈ Fin ∧ ( dom 𝐹 ∖ 𝐵 ) ∈ Fin ) → ( ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹 ∖ 𝐵 ) ) ∈ Fin ) |
10 |
8 1 9
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹 ∖ 𝐵 ) ) ∈ Fin ) |
11 |
|
ressuppssdif |
⊢ ( ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 supp 𝑍 ) ⊆ ( ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹 ∖ 𝐵 ) ) ) |
12 |
2 5 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹 ∖ 𝐵 ) ) ) |
13 |
10 12
|
ssfid |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |