Step |
Hyp |
Ref |
Expression |
1 |
|
elinel2 |
⊢ ( 𝑏 ∈ ( 𝐵 ∩ dom 𝐹 ) → 𝑏 ∈ dom 𝐹 ) |
2 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐹 ) |
3 |
1 2
|
eleq2s |
⊢ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) → 𝑏 ∈ dom 𝐹 ) |
4 |
3
|
ad2antrl |
⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → 𝑏 ∈ dom 𝐹 ) |
5 |
|
snssi |
⊢ ( 𝑏 ∈ 𝐵 → { 𝑏 } ⊆ 𝐵 ) |
6 |
|
resima2 |
⊢ ( { 𝑏 } ⊆ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) = ( 𝐹 “ { 𝑏 } ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑏 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) = ( 𝐹 “ { 𝑏 } ) ) |
8 |
7
|
neeq1d |
⊢ ( 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ↔ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
9 |
8
|
biimpd |
⊢ ( 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
10 |
9
|
adantld |
⊢ ( 𝑏 ∈ 𝐵 → ( ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
11 |
10
|
adantld |
⊢ ( 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
12 |
|
elin |
⊢ ( 𝑏 ∈ ( 𝐵 ∩ dom 𝐹 ) ↔ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ dom 𝐹 ) ) |
13 |
|
pm2.24 |
⊢ ( 𝑏 ∈ 𝐵 → ( ¬ 𝑏 ∈ 𝐵 → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ dom 𝐹 ) → ( ¬ 𝑏 ∈ 𝐵 → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
15 |
12 14
|
sylbi |
⊢ ( 𝑏 ∈ ( 𝐵 ∩ dom 𝐹 ) → ( ¬ 𝑏 ∈ 𝐵 → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
16 |
15 2
|
eleq2s |
⊢ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) → ( ¬ 𝑏 ∈ 𝐵 → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
17 |
16
|
ad2antrl |
⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → ( ¬ 𝑏 ∈ 𝐵 → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
18 |
17
|
com12 |
⊢ ( ¬ 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
19 |
11 18
|
pm2.61i |
⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) |
20 |
4 19
|
jca |
⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → ( 𝑏 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
21 |
20
|
ex |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) → ( 𝑏 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) ) |
22 |
21
|
ss2abdv |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑏 ∣ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) } ⊆ { 𝑏 ∣ ( 𝑏 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) } ) |
23 |
|
df-rab |
⊢ { 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } } = { 𝑏 ∣ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) } |
24 |
|
df-rab |
⊢ { 𝑏 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } } = { 𝑏 ∣ ( 𝑏 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) } |
25 |
22 23 24
|
3sstr4g |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } } ⊆ { 𝑏 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } } ) |
26 |
|
resexg |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ↾ 𝐵 ) ∈ V ) |
27 |
|
suppval |
⊢ ( ( ( 𝐹 ↾ 𝐵 ) ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) = { 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } } ) |
28 |
26 27
|
sylan |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) = { 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } } ) |
29 |
|
suppval |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) = { 𝑏 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } } ) |
30 |
25 28 29
|
3sstr4d |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) |