Metamath Proof Explorer


Theorem ressuppss

Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019)

Ref Expression
Assertion ressuppss ( ( 𝐹𝑉𝑍𝑊 ) → ( ( 𝐹𝐵 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) )

Proof

Step Hyp Ref Expression
1 elinel2 ( 𝑏 ∈ ( 𝐵 ∩ dom 𝐹 ) → 𝑏 ∈ dom 𝐹 )
2 dmres dom ( 𝐹𝐵 ) = ( 𝐵 ∩ dom 𝐹 )
3 1 2 eleq2s ( 𝑏 ∈ dom ( 𝐹𝐵 ) → 𝑏 ∈ dom 𝐹 )
4 3 ad2antrl ( ( ( 𝐹𝑉𝑍𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹𝐵 ) ∧ ( ( 𝐹𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → 𝑏 ∈ dom 𝐹 )
5 snssi ( 𝑏𝐵 → { 𝑏 } ⊆ 𝐵 )
6 resima2 ( { 𝑏 } ⊆ 𝐵 → ( ( 𝐹𝐵 ) “ { 𝑏 } ) = ( 𝐹 “ { 𝑏 } ) )
7 5 6 syl ( 𝑏𝐵 → ( ( 𝐹𝐵 ) “ { 𝑏 } ) = ( 𝐹 “ { 𝑏 } ) )
8 7 neeq1d ( 𝑏𝐵 → ( ( ( 𝐹𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ↔ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) )
9 8 biimpd ( 𝑏𝐵 → ( ( ( 𝐹𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) )
10 9 adantld ( 𝑏𝐵 → ( ( 𝑏 ∈ dom ( 𝐹𝐵 ) ∧ ( ( 𝐹𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) )
11 10 adantld ( 𝑏𝐵 → ( ( ( 𝐹𝑉𝑍𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹𝐵 ) ∧ ( ( 𝐹𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) )
12 elin ( 𝑏 ∈ ( 𝐵 ∩ dom 𝐹 ) ↔ ( 𝑏𝐵𝑏 ∈ dom 𝐹 ) )
13 pm2.24 ( 𝑏𝐵 → ( ¬ 𝑏𝐵 → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) )
14 13 adantr ( ( 𝑏𝐵𝑏 ∈ dom 𝐹 ) → ( ¬ 𝑏𝐵 → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) )
15 12 14 sylbi ( 𝑏 ∈ ( 𝐵 ∩ dom 𝐹 ) → ( ¬ 𝑏𝐵 → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) )
16 15 2 eleq2s ( 𝑏 ∈ dom ( 𝐹𝐵 ) → ( ¬ 𝑏𝐵 → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) )
17 16 ad2antrl ( ( ( 𝐹𝑉𝑍𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹𝐵 ) ∧ ( ( 𝐹𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → ( ¬ 𝑏𝐵 → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) )
18 17 com12 ( ¬ 𝑏𝐵 → ( ( ( 𝐹𝑉𝑍𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹𝐵 ) ∧ ( ( 𝐹𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) )
19 11 18 pm2.61i ( ( ( 𝐹𝑉𝑍𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹𝐵 ) ∧ ( ( 𝐹𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } )
20 4 19 jca ( ( ( 𝐹𝑉𝑍𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹𝐵 ) ∧ ( ( 𝐹𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → ( 𝑏 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) )
21 20 ex ( ( 𝐹𝑉𝑍𝑊 ) → ( ( 𝑏 ∈ dom ( 𝐹𝐵 ) ∧ ( ( 𝐹𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) → ( 𝑏 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) )
22 21 ss2abdv ( ( 𝐹𝑉𝑍𝑊 ) → { 𝑏 ∣ ( 𝑏 ∈ dom ( 𝐹𝐵 ) ∧ ( ( 𝐹𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) } ⊆ { 𝑏 ∣ ( 𝑏 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) } )
23 df-rab { 𝑏 ∈ dom ( 𝐹𝐵 ) ∣ ( ( 𝐹𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } } = { 𝑏 ∣ ( 𝑏 ∈ dom ( 𝐹𝐵 ) ∧ ( ( 𝐹𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) }
24 df-rab { 𝑏 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } } = { 𝑏 ∣ ( 𝑏 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) }
25 22 23 24 3sstr4g ( ( 𝐹𝑉𝑍𝑊 ) → { 𝑏 ∈ dom ( 𝐹𝐵 ) ∣ ( ( 𝐹𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } } ⊆ { 𝑏 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } } )
26 resexg ( 𝐹𝑉 → ( 𝐹𝐵 ) ∈ V )
27 suppval ( ( ( 𝐹𝐵 ) ∈ V ∧ 𝑍𝑊 ) → ( ( 𝐹𝐵 ) supp 𝑍 ) = { 𝑏 ∈ dom ( 𝐹𝐵 ) ∣ ( ( 𝐹𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } } )
28 26 27 sylan ( ( 𝐹𝑉𝑍𝑊 ) → ( ( 𝐹𝐵 ) supp 𝑍 ) = { 𝑏 ∈ dom ( 𝐹𝐵 ) ∣ ( ( 𝐹𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } } )
29 suppval ( ( 𝐹𝑉𝑍𝑊 ) → ( 𝐹 supp 𝑍 ) = { 𝑏 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } } )
30 25 28 29 3sstr4d ( ( 𝐹𝑉𝑍𝑊 ) → ( ( 𝐹𝐵 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) )