| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldif |
⊢ ( 𝑥 ∈ ( { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ∖ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) ↔ ( 𝑥 ∈ { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ∧ ¬ 𝑥 ∈ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) ) |
| 2 |
|
sneq |
⊢ ( 𝑧 = 𝑥 → { 𝑧 } = { 𝑥 } ) |
| 3 |
2
|
imaeq2d |
⊢ ( 𝑧 = 𝑥 → ( 𝐹 “ { 𝑧 } ) = ( 𝐹 “ { 𝑥 } ) ) |
| 4 |
3
|
neeq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } ↔ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ) |
| 5 |
4
|
elrab |
⊢ ( 𝑥 ∈ { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ) |
| 6 |
|
ianor |
⊢ ( ¬ ( 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) ↔ ( ¬ 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) ∨ ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) ) |
| 7 |
2
|
imaeq2d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) = ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ) |
| 8 |
7
|
neeq1d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } ↔ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) ) |
| 9 |
8
|
elrab |
⊢ ( 𝑥 ∈ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ↔ ( 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) ) |
| 10 |
6 9
|
xchnxbir |
⊢ ( ¬ 𝑥 ∈ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ↔ ( ¬ 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) ∨ ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) ) |
| 11 |
|
ianor |
⊢ ( ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐹 ) ↔ ( ¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹 ) ) |
| 12 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐹 ) |
| 13 |
12
|
elin2 |
⊢ ( 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐹 ) ) |
| 14 |
11 13
|
xchnxbir |
⊢ ( ¬ 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) ↔ ( ¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹 ) ) |
| 15 |
|
simpl |
⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → 𝑥 ∈ dom 𝐹 ) |
| 16 |
15
|
anim2i |
⊢ ( ( ¬ 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ) → ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐹 ) ) |
| 17 |
16
|
ancomd |
⊢ ( ( ¬ 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ) → ( 𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 18 |
|
eldif |
⊢ ( 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 19 |
17 18
|
sylibr |
⊢ ( ( ¬ 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) |
| 20 |
19
|
ex |
⊢ ( ¬ 𝑥 ∈ 𝐵 → ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 21 |
|
pm2.24 |
⊢ ( 𝑥 ∈ dom 𝐹 → ( ¬ 𝑥 ∈ dom 𝐹 → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → ( ¬ 𝑥 ∈ dom 𝐹 → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 23 |
22
|
com12 |
⊢ ( ¬ 𝑥 ∈ dom 𝐹 → ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 24 |
20 23
|
jaoi |
⊢ ( ( ¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹 ) → ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 25 |
14 24
|
sylbi |
⊢ ( ¬ 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) → ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 26 |
15
|
adantl |
⊢ ( ( ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ∧ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ) → 𝑥 ∈ dom 𝐹 ) |
| 27 |
|
snssi |
⊢ ( 𝑥 ∈ 𝐵 → { 𝑥 } ⊆ 𝐵 ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) → { 𝑥 } ⊆ 𝐵 ) |
| 29 |
|
resima2 |
⊢ ( { 𝑥 } ⊆ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) = ( 𝐹 “ { 𝑥 } ) ) |
| 30 |
28 29
|
syl |
⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) = ( 𝐹 “ { 𝑥 } ) ) |
| 31 |
30
|
eqcomd |
⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ { 𝑥 } ) = ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ) |
| 32 |
31
|
adantr |
⊢ ( ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) = { 𝑍 } ) → ( 𝐹 “ { 𝑥 } ) = ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ) |
| 33 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) = { 𝑍 } ) → ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) = { 𝑍 } ) |
| 34 |
32 33
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) = { 𝑍 } ) → ( 𝐹 “ { 𝑥 } ) = { 𝑍 } ) |
| 35 |
34
|
ex |
⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) = { 𝑍 } → ( 𝐹 “ { 𝑥 } ) = { 𝑍 } ) ) |
| 36 |
35
|
necon3d |
⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } → ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) ) |
| 37 |
36
|
impancom |
⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → ( 𝑥 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) ) |
| 38 |
37
|
con3d |
⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → ( ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } → ¬ 𝑥 ∈ 𝐵 ) ) |
| 39 |
38
|
impcom |
⊢ ( ( ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ∧ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ) → ¬ 𝑥 ∈ 𝐵 ) |
| 40 |
26 39
|
eldifd |
⊢ ( ( ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ∧ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) |
| 41 |
40
|
ex |
⊢ ( ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } → ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 42 |
25 41
|
jaoi |
⊢ ( ( ¬ 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) ∨ ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) → ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 43 |
42
|
impcom |
⊢ ( ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ∧ ( ¬ 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) ∨ ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) |
| 44 |
5 10 43
|
syl2anb |
⊢ ( ( 𝑥 ∈ { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ∧ ¬ 𝑥 ∈ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) |
| 45 |
1 44
|
sylbi |
⊢ ( 𝑥 ∈ ( { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ∖ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) |
| 46 |
45
|
a1i |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑥 ∈ ( { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ∖ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 47 |
46
|
ssrdv |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ∖ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) ⊆ ( dom 𝐹 ∖ 𝐵 ) ) |
| 48 |
|
ssundif |
⊢ ( { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ⊆ ( { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ∪ ( dom 𝐹 ∖ 𝐵 ) ) ↔ ( { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ∖ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) ⊆ ( dom 𝐹 ∖ 𝐵 ) ) |
| 49 |
47 48
|
sylibr |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ⊆ ( { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ∪ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 50 |
|
suppval |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) = { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ) |
| 51 |
|
resexg |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ↾ 𝐵 ) ∈ V ) |
| 52 |
|
suppval |
⊢ ( ( ( 𝐹 ↾ 𝐵 ) ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) = { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) |
| 53 |
51 52
|
sylan |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) = { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) |
| 54 |
53
|
uneq1d |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹 ∖ 𝐵 ) ) = ( { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ∪ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 55 |
49 50 54
|
3sstr4d |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) ⊆ ( ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹 ∖ 𝐵 ) ) ) |