Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
2 |
|
eqid |
⊢ ( UnifSet ‘ 𝑊 ) = ( UnifSet ‘ 𝑊 ) |
3 |
1 2
|
ussval |
⊢ ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) = ( UnifSt ‘ 𝑊 ) |
4 |
3
|
oveq1i |
⊢ ( ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ↾t ( 𝐴 × 𝐴 ) ) = ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) |
5 |
|
fvex |
⊢ ( UnifSet ‘ 𝑊 ) ∈ V |
6 |
|
fvex |
⊢ ( Base ‘ 𝑊 ) ∈ V |
7 |
6 6
|
xpex |
⊢ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∈ V |
8 |
|
sqxpexg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 × 𝐴 ) ∈ V ) |
9 |
|
restco |
⊢ ( ( ( UnifSet ‘ 𝑊 ) ∈ V ∧ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∈ V ∧ ( 𝐴 × 𝐴 ) ∈ V ) → ( ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ↾t ( 𝐴 × 𝐴 ) ) = ( ( UnifSet ‘ 𝑊 ) ↾t ( ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) ) |
10 |
5 7 8 9
|
mp3an12i |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ↾t ( 𝐴 × 𝐴 ) ) = ( ( UnifSet ‘ 𝑊 ) ↾t ( ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) ) |
11 |
4 10
|
eqtr3id |
⊢ ( 𝐴 ∈ 𝑉 → ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) = ( ( UnifSet ‘ 𝑊 ) ↾t ( ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) ) |
12 |
|
inxp |
⊢ ( ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) × ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) ) |
13 |
|
incom |
⊢ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) |
14 |
|
eqid |
⊢ ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s 𝐴 ) |
15 |
14 1
|
ressbas |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
16 |
13 15
|
eqtr3id |
⊢ ( 𝐴 ∈ 𝑉 → ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
17 |
16
|
sqxpeqd |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) × ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) ) = ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) × ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) |
18 |
12 17
|
syl5eq |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) × ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( UnifSet ‘ 𝑊 ) ↾t ( ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) × ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) ) |
20 |
14 2
|
ressunif |
⊢ ( 𝐴 ∈ 𝑉 → ( UnifSet ‘ 𝑊 ) = ( UnifSet ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) × ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) = ( ( UnifSet ‘ ( 𝑊 ↾s 𝐴 ) ) ↾t ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) × ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) ) |
22 |
|
eqid |
⊢ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) |
23 |
|
eqid |
⊢ ( UnifSet ‘ ( 𝑊 ↾s 𝐴 ) ) = ( UnifSet ‘ ( 𝑊 ↾s 𝐴 ) ) |
24 |
22 23
|
ussval |
⊢ ( ( UnifSet ‘ ( 𝑊 ↾s 𝐴 ) ) ↾t ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) × ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) = ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) |
25 |
24
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( ( UnifSet ‘ ( 𝑊 ↾s 𝐴 ) ) ↾t ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) × ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) = ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
26 |
19 21 25
|
3eqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ( ( UnifSet ‘ 𝑊 ) ↾t ( ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) = ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
27 |
11 26
|
eqtr2d |
⊢ ( 𝐴 ∈ 𝑉 → ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) = ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) ) |