Step |
Hyp |
Ref |
Expression |
1 |
|
ressbas.r |
⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) |
2 |
|
ressbas.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
3 |
|
elex |
⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) |
4 |
|
elex |
⊢ ( 𝐴 ∈ 𝑌 → 𝐴 ∈ V ) |
5 |
|
simpl |
⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ V ) → 𝑊 ∈ V ) |
6 |
|
ovex |
⊢ ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ∈ V |
7 |
|
ifcl |
⊢ ( ( 𝑊 ∈ V ∧ ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ∈ V ) → if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ∈ V ) |
8 |
5 6 7
|
sylancl |
⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ V ) → if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ∈ V ) |
9 |
|
simpl |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → 𝑤 = 𝑊 ) |
10 |
9
|
fveq2d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
11 |
10 2
|
eqtr4di |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → ( Base ‘ 𝑤 ) = 𝐵 ) |
12 |
|
simpr |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → 𝑎 = 𝐴 ) |
13 |
11 12
|
sseq12d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → ( ( Base ‘ 𝑤 ) ⊆ 𝑎 ↔ 𝐵 ⊆ 𝐴 ) ) |
14 |
12 11
|
ineq12d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → ( 𝑎 ∩ ( Base ‘ 𝑤 ) ) = ( 𝐴 ∩ 𝐵 ) ) |
15 |
14
|
opeq2d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → 〈 ( Base ‘ ndx ) , ( 𝑎 ∩ ( Base ‘ 𝑤 ) ) 〉 = 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) |
16 |
9 15
|
oveq12d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → ( 𝑤 sSet 〈 ( Base ‘ ndx ) , ( 𝑎 ∩ ( Base ‘ 𝑤 ) ) 〉 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) |
17 |
13 9 16
|
ifbieq12d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → if ( ( Base ‘ 𝑤 ) ⊆ 𝑎 , 𝑤 , ( 𝑤 sSet 〈 ( Base ‘ ndx ) , ( 𝑎 ∩ ( Base ‘ 𝑤 ) ) 〉 ) ) = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |
18 |
|
df-ress |
⊢ ↾s = ( 𝑤 ∈ V , 𝑎 ∈ V ↦ if ( ( Base ‘ 𝑤 ) ⊆ 𝑎 , 𝑤 , ( 𝑤 sSet 〈 ( Base ‘ ndx ) , ( 𝑎 ∩ ( Base ‘ 𝑤 ) ) 〉 ) ) ) |
19 |
17 18
|
ovmpoga |
⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ V ∧ if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ∈ V ) → ( 𝑊 ↾s 𝐴 ) = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |
20 |
8 19
|
mpd3an3 |
⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |
21 |
3 4 20
|
syl2an |
⊢ ( ( 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → ( 𝑊 ↾s 𝐴 ) = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |
22 |
1 21
|
eqtrid |
⊢ ( ( 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → 𝑅 = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |