| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 2 |
|
eqid |
⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 3 |
1 2
|
xmsxmet |
⊢ ( 𝐾 ∈ ∞MetSp → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) |
| 5 |
|
xmetres |
⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( ∞Met ‘ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( ∞Met ‘ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 7 |
|
resres |
⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 8 |
|
inxp |
⊢ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) |
| 9 |
8
|
reseq2i |
⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 10 |
7 9
|
eqtri |
⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 11 |
|
eqid |
⊢ ( 𝐾 ↾s 𝐴 ) = ( 𝐾 ↾s 𝐴 ) |
| 12 |
|
eqid |
⊢ ( dist ‘ 𝐾 ) = ( dist ‘ 𝐾 ) |
| 13 |
11 12
|
ressds |
⊢ ( 𝐴 ∈ 𝑉 → ( dist ‘ 𝐾 ) = ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( dist ‘ 𝐾 ) = ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 15 |
|
incom |
⊢ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) |
| 16 |
11 1
|
ressbas |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 18 |
15 17
|
eqtrid |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 19 |
18
|
sqxpeqd |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
| 20 |
14 19
|
reseq12d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) = ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) |
| 21 |
10 20
|
eqtrid |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) |
| 22 |
18
|
fveq2d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ∞Met ‘ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ∞Met ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
| 23 |
6 21 22
|
3eltr3d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
| 24 |
|
eqid |
⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) |
| 25 |
24 1 2
|
xmstopn |
⊢ ( 𝐾 ∈ ∞MetSp → ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
| 27 |
26
|
oveq1d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 28 |
|
inss1 |
⊢ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ⊆ ( Base ‘ 𝐾 ) |
| 29 |
|
xpss12 |
⊢ ( ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ⊆ ( Base ‘ 𝐾 ) ∧ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ⊆ ( Base ‘ 𝐾 ) ) → ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ⊆ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 30 |
28 28 29
|
mp2an |
⊢ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ⊆ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) |
| 31 |
|
resabs1 |
⊢ ( ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ⊆ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) ) |
| 32 |
30 31
|
ax-mp |
⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 33 |
10 32
|
eqtr4i |
⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 34 |
|
eqid |
⊢ ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 35 |
|
eqid |
⊢ ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) = ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) |
| 36 |
33 34 35
|
metrest |
⊢ ( ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ∧ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ⊆ ( Base ‘ 𝐾 ) ) → ( ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
| 37 |
4 28 36
|
sylancl |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
| 38 |
27 37
|
eqtrd |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
| 39 |
|
xmstps |
⊢ ( 𝐾 ∈ ∞MetSp → 𝐾 ∈ TopSp ) |
| 40 |
1 24
|
tpsuni |
⊢ ( 𝐾 ∈ TopSp → ( Base ‘ 𝐾 ) = ∪ ( TopOpen ‘ 𝐾 ) ) |
| 41 |
39 40
|
syl |
⊢ ( 𝐾 ∈ ∞MetSp → ( Base ‘ 𝐾 ) = ∪ ( TopOpen ‘ 𝐾 ) ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( Base ‘ 𝐾 ) = ∪ ( TopOpen ‘ 𝐾 ) ) |
| 43 |
42
|
ineq2d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( 𝐴 ∩ ∪ ( TopOpen ‘ 𝐾 ) ) ) |
| 44 |
15 43
|
eqtrid |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( 𝐴 ∩ ∪ ( TopOpen ‘ 𝐾 ) ) ) |
| 45 |
44
|
oveq2d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ( TopOpen ‘ 𝐾 ) ↾t ( 𝐴 ∩ ∪ ( TopOpen ‘ 𝐾 ) ) ) ) |
| 46 |
1 24
|
istps |
⊢ ( 𝐾 ∈ TopSp ↔ ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 47 |
39 46
|
sylib |
⊢ ( 𝐾 ∈ ∞MetSp → ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 48 |
|
eqid |
⊢ ∪ ( TopOpen ‘ 𝐾 ) = ∪ ( TopOpen ‘ 𝐾 ) |
| 49 |
48
|
restin |
⊢ ( ( ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( ( TopOpen ‘ 𝐾 ) ↾t ( 𝐴 ∩ ∪ ( TopOpen ‘ 𝐾 ) ) ) ) |
| 50 |
47 49
|
sylan |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( ( TopOpen ‘ 𝐾 ) ↾t ( 𝐴 ∩ ∪ ( TopOpen ‘ 𝐾 ) ) ) ) |
| 51 |
45 50
|
eqtr4d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) ) |
| 52 |
21
|
fveq2d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) = ( MetOpen ‘ ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) ) |
| 53 |
38 51 52
|
3eqtr3d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( MetOpen ‘ ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) ) |
| 54 |
11 24
|
resstopn |
⊢ ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( TopOpen ‘ ( 𝐾 ↾s 𝐴 ) ) |
| 55 |
|
eqid |
⊢ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) |
| 56 |
|
eqid |
⊢ ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) = ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
| 57 |
54 55 56
|
isxms2 |
⊢ ( ( 𝐾 ↾s 𝐴 ) ∈ ∞MetSp ↔ ( ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ∧ ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( MetOpen ‘ ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) ) ) |
| 58 |
23 53 57
|
sylanbrc |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐾 ↾s 𝐴 ) ∈ ∞MetSp ) |