Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → 𝐽 ∈ 𝑉 ) |
2 |
|
simp3 |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → 𝑇 ∈ 𝑊 ) |
3 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → 𝑆 ∈ V ) |
4 |
3
|
3adant1 |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → 𝑆 ∈ V ) |
5 |
|
restco |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ∧ 𝑆 ∈ V ) → ( ( 𝐽 ↾t 𝑇 ) ↾t 𝑆 ) = ( 𝐽 ↾t ( 𝑇 ∩ 𝑆 ) ) ) |
6 |
1 2 4 5
|
syl3anc |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → ( ( 𝐽 ↾t 𝑇 ) ↾t 𝑆 ) = ( 𝐽 ↾t ( 𝑇 ∩ 𝑆 ) ) ) |
7 |
|
simp2 |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → 𝑆 ⊆ 𝑇 ) |
8 |
|
sseqin2 |
⊢ ( 𝑆 ⊆ 𝑇 ↔ ( 𝑇 ∩ 𝑆 ) = 𝑆 ) |
9 |
7 8
|
sylib |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → ( 𝑇 ∩ 𝑆 ) = 𝑆 ) |
10 |
9
|
oveq2d |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → ( 𝐽 ↾t ( 𝑇 ∩ 𝑆 ) ) = ( 𝐽 ↾t 𝑆 ) ) |
11 |
6 10
|
eqtrd |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → ( ( 𝐽 ↾t 𝑇 ) ↾t 𝑆 ) = ( 𝐽 ↾t 𝑆 ) ) |