| Step | Hyp | Ref | Expression | 
						
							| 1 |  | restcldi.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | simp2 | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝐵  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐵  ⊆  𝐴 )  →  𝐵  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 3 |  | dfss | ⊢ ( 𝐵  ⊆  𝐴  ↔  𝐵  =  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 4 | 3 | biimpi | ⊢ ( 𝐵  ⊆  𝐴  →  𝐵  =  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝐵  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐵  ⊆  𝐴 )  →  𝐵  =  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 6 |  | ineq1 | ⊢ ( 𝑣  =  𝐵  →  ( 𝑣  ∩  𝐴 )  =  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 7 | 6 | rspceeqv | ⊢ ( ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐵  =  ( 𝐵  ∩  𝐴 ) )  →  ∃ 𝑣  ∈  ( Clsd ‘ 𝐽 ) 𝐵  =  ( 𝑣  ∩  𝐴 ) ) | 
						
							| 8 | 2 5 7 | syl2anc | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝐵  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐵  ⊆  𝐴 )  →  ∃ 𝑣  ∈  ( Clsd ‘ 𝐽 ) 𝐵  =  ( 𝑣  ∩  𝐴 ) ) | 
						
							| 9 |  | cldrcl | ⊢ ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝐵  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐵  ⊆  𝐴 )  →  𝐽  ∈  Top ) | 
						
							| 11 |  | simp1 | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝐵  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐵  ⊆  𝐴 )  →  𝐴  ⊆  𝑋 ) | 
						
							| 12 | 1 | restcld | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐵  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝐴 ) )  ↔  ∃ 𝑣  ∈  ( Clsd ‘ 𝐽 ) 𝐵  =  ( 𝑣  ∩  𝐴 ) ) ) | 
						
							| 13 | 10 11 12 | syl2anc | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝐵  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐵  ⊆  𝐴 )  →  ( 𝐵  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝐴 ) )  ↔  ∃ 𝑣  ∈  ( Clsd ‘ 𝐽 ) 𝐵  =  ( 𝑣  ∩  𝐴 ) ) ) | 
						
							| 14 | 8 13 | mpbird | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝐵  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐵  ⊆  𝐴 )  →  𝐵  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝐴 ) ) ) |