| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cldrcl | ⊢ ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 2 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 3 | 2 | cldss | ⊢ ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  →  𝐴  ⊆  ∪  𝐽 ) | 
						
							| 4 | 2 | restcld | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  ∪  𝐽 )  →  ( 𝐵  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝐴 ) )  ↔  ∃ 𝑣  ∈  ( Clsd ‘ 𝐽 ) 𝐵  =  ( 𝑣  ∩  𝐴 ) ) ) | 
						
							| 5 | 1 3 4 | syl2anc | ⊢ ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  →  ( 𝐵  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝐴 ) )  ↔  ∃ 𝑣  ∈  ( Clsd ‘ 𝐽 ) 𝐵  =  ( 𝑣  ∩  𝐴 ) ) ) | 
						
							| 6 |  | incld | ⊢ ( ( 𝑣  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝑣  ∩  𝐴 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 7 | 6 | ancoms | ⊢ ( ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑣  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝑣  ∩  𝐴 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝐵  =  ( 𝑣  ∩  𝐴 )  →  ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  ↔  ( 𝑣  ∩  𝐴 )  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 9 | 7 8 | syl5ibrcom | ⊢ ( ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑣  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝐵  =  ( 𝑣  ∩  𝐴 )  →  𝐵  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 10 | 9 | rexlimdva | ⊢ ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  →  ( ∃ 𝑣  ∈  ( Clsd ‘ 𝐽 ) 𝐵  =  ( 𝑣  ∩  𝐴 )  →  𝐵  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 11 | 5 10 | sylbid | ⊢ ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  →  ( 𝐵  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝐴 ) )  →  𝐵  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐵  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝐴 ) ) )  →  𝐵  ∈  ( Clsd ‘ 𝐽 ) ) |