Step |
Hyp |
Ref |
Expression |
1 |
|
cldrcl |
⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) |
2 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
3 |
2
|
cldss |
⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → 𝐴 ⊆ ∪ 𝐽 ) |
4 |
2
|
restcld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽 ) → ( 𝐵 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ↔ ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) 𝐵 = ( 𝑣 ∩ 𝐴 ) ) ) |
5 |
1 3 4
|
syl2anc |
⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐵 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ↔ ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) 𝐵 = ( 𝑣 ∩ 𝐴 ) ) ) |
6 |
|
incld |
⊢ ( ( 𝑣 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑣 ∩ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) |
7 |
6
|
ancoms |
⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑣 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑣 ∩ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) |
8 |
|
eleq1 |
⊢ ( 𝐵 = ( 𝑣 ∩ 𝐴 ) → ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑣 ∩ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
9 |
7 8
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑣 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐵 = ( 𝑣 ∩ 𝐴 ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) ) |
10 |
9
|
rexlimdva |
⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) 𝐵 = ( 𝑣 ∩ 𝐴 ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) ) |
11 |
5 10
|
sylbid |
⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐵 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) ) |
12 |
11
|
imp |
⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) |