Metamath Proof Explorer


Theorem restco

Description: Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion restco ( ( 𝐽𝑉𝐴𝑊𝐵𝑋 ) → ( ( 𝐽t 𝐴 ) ↾t 𝐵 ) = ( 𝐽t ( 𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 vex 𝑦 ∈ V
2 1 inex1 ( 𝑦𝐴 ) ∈ V
3 ineq1 ( 𝑥 = ( 𝑦𝐴 ) → ( 𝑥𝐵 ) = ( ( 𝑦𝐴 ) ∩ 𝐵 ) )
4 inass ( ( 𝑦𝐴 ) ∩ 𝐵 ) = ( 𝑦 ∩ ( 𝐴𝐵 ) )
5 3 4 eqtrdi ( 𝑥 = ( 𝑦𝐴 ) → ( 𝑥𝐵 ) = ( 𝑦 ∩ ( 𝐴𝐵 ) ) )
6 2 5 abrexco { 𝑧 ∣ ∃ 𝑥 ∈ { 𝑤 ∣ ∃ 𝑦𝐽 𝑤 = ( 𝑦𝐴 ) } 𝑧 = ( 𝑥𝐵 ) } = { 𝑧 ∣ ∃ 𝑦𝐽 𝑧 = ( 𝑦 ∩ ( 𝐴𝐵 ) ) }
7 eqid ( 𝑦𝐽 ↦ ( 𝑦𝐴 ) ) = ( 𝑦𝐽 ↦ ( 𝑦𝐴 ) )
8 7 rnmpt ran ( 𝑦𝐽 ↦ ( 𝑦𝐴 ) ) = { 𝑤 ∣ ∃ 𝑦𝐽 𝑤 = ( 𝑦𝐴 ) }
9 8 mpteq1i ( 𝑥 ∈ ran ( 𝑦𝐽 ↦ ( 𝑦𝐴 ) ) ↦ ( 𝑥𝐵 ) ) = ( 𝑥 ∈ { 𝑤 ∣ ∃ 𝑦𝐽 𝑤 = ( 𝑦𝐴 ) } ↦ ( 𝑥𝐵 ) )
10 9 rnmpt ran ( 𝑥 ∈ ran ( 𝑦𝐽 ↦ ( 𝑦𝐴 ) ) ↦ ( 𝑥𝐵 ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ { 𝑤 ∣ ∃ 𝑦𝐽 𝑤 = ( 𝑦𝐴 ) } 𝑧 = ( 𝑥𝐵 ) }
11 eqid ( 𝑦𝐽 ↦ ( 𝑦 ∩ ( 𝐴𝐵 ) ) ) = ( 𝑦𝐽 ↦ ( 𝑦 ∩ ( 𝐴𝐵 ) ) )
12 11 rnmpt ran ( 𝑦𝐽 ↦ ( 𝑦 ∩ ( 𝐴𝐵 ) ) ) = { 𝑧 ∣ ∃ 𝑦𝐽 𝑧 = ( 𝑦 ∩ ( 𝐴𝐵 ) ) }
13 6 10 12 3eqtr4i ran ( 𝑥 ∈ ran ( 𝑦𝐽 ↦ ( 𝑦𝐴 ) ) ↦ ( 𝑥𝐵 ) ) = ran ( 𝑦𝐽 ↦ ( 𝑦 ∩ ( 𝐴𝐵 ) ) )
14 restval ( ( 𝐽𝑉𝐴𝑊 ) → ( 𝐽t 𝐴 ) = ran ( 𝑦𝐽 ↦ ( 𝑦𝐴 ) ) )
15 14 3adant3 ( ( 𝐽𝑉𝐴𝑊𝐵𝑋 ) → ( 𝐽t 𝐴 ) = ran ( 𝑦𝐽 ↦ ( 𝑦𝐴 ) ) )
16 15 oveq1d ( ( 𝐽𝑉𝐴𝑊𝐵𝑋 ) → ( ( 𝐽t 𝐴 ) ↾t 𝐵 ) = ( ran ( 𝑦𝐽 ↦ ( 𝑦𝐴 ) ) ↾t 𝐵 ) )
17 ovex ( 𝐽t 𝐴 ) ∈ V
18 15 17 eqeltrrdi ( ( 𝐽𝑉𝐴𝑊𝐵𝑋 ) → ran ( 𝑦𝐽 ↦ ( 𝑦𝐴 ) ) ∈ V )
19 simp3 ( ( 𝐽𝑉𝐴𝑊𝐵𝑋 ) → 𝐵𝑋 )
20 restval ( ( ran ( 𝑦𝐽 ↦ ( 𝑦𝐴 ) ) ∈ V ∧ 𝐵𝑋 ) → ( ran ( 𝑦𝐽 ↦ ( 𝑦𝐴 ) ) ↾t 𝐵 ) = ran ( 𝑥 ∈ ran ( 𝑦𝐽 ↦ ( 𝑦𝐴 ) ) ↦ ( 𝑥𝐵 ) ) )
21 18 19 20 syl2anc ( ( 𝐽𝑉𝐴𝑊𝐵𝑋 ) → ( ran ( 𝑦𝐽 ↦ ( 𝑦𝐴 ) ) ↾t 𝐵 ) = ran ( 𝑥 ∈ ran ( 𝑦𝐽 ↦ ( 𝑦𝐴 ) ) ↦ ( 𝑥𝐵 ) ) )
22 16 21 eqtrd ( ( 𝐽𝑉𝐴𝑊𝐵𝑋 ) → ( ( 𝐽t 𝐴 ) ↾t 𝐵 ) = ran ( 𝑥 ∈ ran ( 𝑦𝐽 ↦ ( 𝑦𝐴 ) ) ↦ ( 𝑥𝐵 ) ) )
23 simp1 ( ( 𝐽𝑉𝐴𝑊𝐵𝑋 ) → 𝐽𝑉 )
24 inex1g ( 𝐴𝑊 → ( 𝐴𝐵 ) ∈ V )
25 24 3ad2ant2 ( ( 𝐽𝑉𝐴𝑊𝐵𝑋 ) → ( 𝐴𝐵 ) ∈ V )
26 restval ( ( 𝐽𝑉 ∧ ( 𝐴𝐵 ) ∈ V ) → ( 𝐽t ( 𝐴𝐵 ) ) = ran ( 𝑦𝐽 ↦ ( 𝑦 ∩ ( 𝐴𝐵 ) ) ) )
27 23 25 26 syl2anc ( ( 𝐽𝑉𝐴𝑊𝐵𝑋 ) → ( 𝐽t ( 𝐴𝐵 ) ) = ran ( 𝑦𝐽 ↦ ( 𝑦 ∩ ( 𝐴𝐵 ) ) ) )
28 13 22 27 3eqtr4a ( ( 𝐽𝑉𝐴𝑊𝐵𝑋 ) → ( ( 𝐽t 𝐴 ) ↾t 𝐵 ) = ( 𝐽t ( 𝐴𝐵 ) ) )