Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑦 ∈ V |
2 |
1
|
inex1 |
⊢ ( 𝑦 ∩ 𝐴 ) ∈ V |
3 |
|
ineq1 |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝐴 ) → ( 𝑥 ∩ 𝐵 ) = ( ( 𝑦 ∩ 𝐴 ) ∩ 𝐵 ) ) |
4 |
|
inass |
⊢ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝐵 ) = ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) |
5 |
3 4
|
eqtrdi |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝐴 ) → ( 𝑥 ∩ 𝐵 ) = ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) ) |
6 |
2 5
|
abrexco |
⊢ { 𝑧 ∣ ∃ 𝑥 ∈ { 𝑤 ∣ ∃ 𝑦 ∈ 𝐽 𝑤 = ( 𝑦 ∩ 𝐴 ) } 𝑧 = ( 𝑥 ∩ 𝐵 ) } = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐽 𝑧 = ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) } |
7 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) = ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) |
8 |
7
|
rnmpt |
⊢ ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) = { 𝑤 ∣ ∃ 𝑦 ∈ 𝐽 𝑤 = ( 𝑦 ∩ 𝐴 ) } |
9 |
8
|
mpteq1i |
⊢ ( 𝑥 ∈ ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↦ ( 𝑥 ∩ 𝐵 ) ) = ( 𝑥 ∈ { 𝑤 ∣ ∃ 𝑦 ∈ 𝐽 𝑤 = ( 𝑦 ∩ 𝐴 ) } ↦ ( 𝑥 ∩ 𝐵 ) ) |
10 |
9
|
rnmpt |
⊢ ran ( 𝑥 ∈ ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↦ ( 𝑥 ∩ 𝐵 ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ { 𝑤 ∣ ∃ 𝑦 ∈ 𝐽 𝑤 = ( 𝑦 ∩ 𝐴 ) } 𝑧 = ( 𝑥 ∩ 𝐵 ) } |
11 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) ) = ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) ) |
12 |
11
|
rnmpt |
⊢ ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) ) = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐽 𝑧 = ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) } |
13 |
6 10 12
|
3eqtr4i |
⊢ ran ( 𝑥 ∈ ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↦ ( 𝑥 ∩ 𝐵 ) ) = ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) ) |
14 |
|
restval |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ) |
16 |
15
|
oveq1d |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐽 ↾t 𝐴 ) ↾t 𝐵 ) = ( ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↾t 𝐵 ) ) |
17 |
|
ovex |
⊢ ( 𝐽 ↾t 𝐴 ) ∈ V |
18 |
15 17
|
eqeltrrdi |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ∈ V ) |
19 |
|
simp3 |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
20 |
|
restval |
⊢ ( ( ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ∈ V ∧ 𝐵 ∈ 𝑋 ) → ( ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↾t 𝐵 ) = ran ( 𝑥 ∈ ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↦ ( 𝑥 ∩ 𝐵 ) ) ) |
21 |
18 19 20
|
syl2anc |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↾t 𝐵 ) = ran ( 𝑥 ∈ ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↦ ( 𝑥 ∩ 𝐵 ) ) ) |
22 |
16 21
|
eqtrd |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐽 ↾t 𝐴 ) ↾t 𝐵 ) = ran ( 𝑥 ∈ ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↦ ( 𝑥 ∩ 𝐵 ) ) ) |
23 |
|
simp1 |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → 𝐽 ∈ 𝑉 ) |
24 |
|
inex1g |
⊢ ( 𝐴 ∈ 𝑊 → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
25 |
24
|
3ad2ant2 |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
26 |
|
restval |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) ∈ V ) → ( 𝐽 ↾t ( 𝐴 ∩ 𝐵 ) ) = ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) ) ) |
27 |
23 25 26
|
syl2anc |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐽 ↾t ( 𝐴 ∩ 𝐵 ) ) = ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) ) ) |
28 |
13 22 27
|
3eqtr4a |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐽 ↾t 𝐴 ) ↾t 𝐵 ) = ( 𝐽 ↾t ( 𝐴 ∩ 𝐵 ) ) ) |