Step |
Hyp |
Ref |
Expression |
1 |
|
distop |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top ) |
2 |
|
elpw2g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
3 |
2
|
biimpar |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ 𝒫 𝐴 ) |
4 |
|
restopn2 |
⊢ ( ( 𝒫 𝐴 ∈ Top ∧ 𝐵 ∈ 𝒫 𝐴 ) → ( 𝑥 ∈ ( 𝒫 𝐴 ↾t 𝐵 ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
5 |
1 3 4
|
syl2an2r |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝒫 𝐴 ↾t 𝐵 ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
6 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵 ) |
7 |
|
sstr |
⊢ ( ( 𝑥 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → 𝑥 ⊆ 𝐴 ) |
8 |
7
|
expcom |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ) |
10 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
11 |
9 10
|
syl6ibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ⊆ 𝐵 → 𝑥 ∈ 𝒫 𝐴 ) ) |
12 |
11
|
pm4.71rd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ⊆ 𝐵 ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
13 |
6 12
|
syl5bb |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝒫 𝐵 ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
14 |
5 13
|
bitr4d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝒫 𝐴 ↾t 𝐵 ) ↔ 𝑥 ∈ 𝒫 𝐵 ) ) |
15 |
14
|
eqrdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝒫 𝐴 ↾t 𝐵 ) = 𝒫 𝐵 ) |