| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwexg |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → 𝒫 𝐴 ∈ V ) |
| 3 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → 𝐽 ⊆ 𝒫 𝐴 ) |
| 4 |
2 3
|
ssexd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → 𝐽 ∈ V ) |
| 5 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → 𝐴 ∈ 𝑉 ) |
| 6 |
|
restval |
⊢ ( ( 𝐽 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 7 |
4 5 6
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 8 |
3
|
sselda |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝒫 𝐴 ) |
| 9 |
8
|
elpwid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ⊆ 𝐴 ) |
| 10 |
|
dfss2 |
⊢ ( 𝑥 ⊆ 𝐴 ↔ ( 𝑥 ∩ 𝐴 ) = 𝑥 ) |
| 11 |
9 10
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑥 ∩ 𝐴 ) = 𝑥 ) |
| 12 |
11
|
mpteq2dva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) = ( 𝑥 ∈ 𝐽 ↦ 𝑥 ) ) |
| 13 |
|
mptresid |
⊢ ( I ↾ 𝐽 ) = ( 𝑥 ∈ 𝐽 ↦ 𝑥 ) |
| 14 |
12 13
|
eqtr4di |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) = ( I ↾ 𝐽 ) ) |
| 15 |
14
|
rneqd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) = ran ( I ↾ 𝐽 ) ) |
| 16 |
|
rnresi |
⊢ ran ( I ↾ 𝐽 ) = 𝐽 |
| 17 |
15 16
|
eqtrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) = 𝐽 ) |
| 18 |
7 17
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → ( 𝐽 ↾t 𝐴 ) = 𝐽 ) |