Metamath Proof Explorer


Theorem restid2

Description: The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion restid2 ( ( 𝐴𝑉𝐽 ⊆ 𝒫 𝐴 ) → ( 𝐽t 𝐴 ) = 𝐽 )

Proof

Step Hyp Ref Expression
1 pwexg ( 𝐴𝑉 → 𝒫 𝐴 ∈ V )
2 1 adantr ( ( 𝐴𝑉𝐽 ⊆ 𝒫 𝐴 ) → 𝒫 𝐴 ∈ V )
3 simpr ( ( 𝐴𝑉𝐽 ⊆ 𝒫 𝐴 ) → 𝐽 ⊆ 𝒫 𝐴 )
4 2 3 ssexd ( ( 𝐴𝑉𝐽 ⊆ 𝒫 𝐴 ) → 𝐽 ∈ V )
5 simpl ( ( 𝐴𝑉𝐽 ⊆ 𝒫 𝐴 ) → 𝐴𝑉 )
6 restval ( ( 𝐽 ∈ V ∧ 𝐴𝑉 ) → ( 𝐽t 𝐴 ) = ran ( 𝑥𝐽 ↦ ( 𝑥𝐴 ) ) )
7 4 5 6 syl2anc ( ( 𝐴𝑉𝐽 ⊆ 𝒫 𝐴 ) → ( 𝐽t 𝐴 ) = ran ( 𝑥𝐽 ↦ ( 𝑥𝐴 ) ) )
8 3 sselda ( ( ( 𝐴𝑉𝐽 ⊆ 𝒫 𝐴 ) ∧ 𝑥𝐽 ) → 𝑥 ∈ 𝒫 𝐴 )
9 8 elpwid ( ( ( 𝐴𝑉𝐽 ⊆ 𝒫 𝐴 ) ∧ 𝑥𝐽 ) → 𝑥𝐴 )
10 df-ss ( 𝑥𝐴 ↔ ( 𝑥𝐴 ) = 𝑥 )
11 9 10 sylib ( ( ( 𝐴𝑉𝐽 ⊆ 𝒫 𝐴 ) ∧ 𝑥𝐽 ) → ( 𝑥𝐴 ) = 𝑥 )
12 11 mpteq2dva ( ( 𝐴𝑉𝐽 ⊆ 𝒫 𝐴 ) → ( 𝑥𝐽 ↦ ( 𝑥𝐴 ) ) = ( 𝑥𝐽𝑥 ) )
13 mptresid ( I ↾ 𝐽 ) = ( 𝑥𝐽𝑥 )
14 12 13 eqtr4di ( ( 𝐴𝑉𝐽 ⊆ 𝒫 𝐴 ) → ( 𝑥𝐽 ↦ ( 𝑥𝐴 ) ) = ( I ↾ 𝐽 ) )
15 14 rneqd ( ( 𝐴𝑉𝐽 ⊆ 𝒫 𝐴 ) → ran ( 𝑥𝐽 ↦ ( 𝑥𝐴 ) ) = ran ( I ↾ 𝐽 ) )
16 rnresi ran ( I ↾ 𝐽 ) = 𝐽
17 15 16 eqtrdi ( ( 𝐴𝑉𝐽 ⊆ 𝒫 𝐴 ) → ran ( 𝑥𝐽 ↦ ( 𝑥𝐴 ) ) = 𝐽 )
18 7 17 eqtrd ( ( 𝐴𝑉𝐽 ⊆ 𝒫 𝐴 ) → ( 𝐽t 𝐴 ) = 𝐽 )