Metamath Proof Explorer


Theorem restidsing

Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009) (Proof shortened by JJ, 25-Aug-2021) (Proof shortened by Peter Mazsa, 6-Oct-2022)

Ref Expression
Assertion restidsing ( I ↾ { 𝐴 } ) = ( { 𝐴 } × { 𝐴 } )

Proof

Step Hyp Ref Expression
1 relres Rel ( I ↾ { 𝐴 } )
2 relxp Rel ( { 𝐴 } × { 𝐴 } )
3 velsn ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 )
4 velsn ( 𝑦 ∈ { 𝐴 } ↔ 𝑦 = 𝐴 )
5 3 4 anbi12i ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) ↔ ( 𝑥 = 𝐴𝑦 = 𝐴 ) )
6 vex 𝑦 ∈ V
7 6 ideq ( 𝑥 I 𝑦𝑥 = 𝑦 )
8 3 7 anbi12i ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 I 𝑦 ) ↔ ( 𝑥 = 𝐴𝑥 = 𝑦 ) )
9 eqeq1 ( 𝑥 = 𝐴 → ( 𝑥 = 𝑦𝐴 = 𝑦 ) )
10 eqcom ( 𝐴 = 𝑦𝑦 = 𝐴 )
11 9 10 bitrdi ( 𝑥 = 𝐴 → ( 𝑥 = 𝑦𝑦 = 𝐴 ) )
12 11 pm5.32i ( ( 𝑥 = 𝐴𝑥 = 𝑦 ) ↔ ( 𝑥 = 𝐴𝑦 = 𝐴 ) )
13 8 12 bitri ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 I 𝑦 ) ↔ ( 𝑥 = 𝐴𝑦 = 𝐴 ) )
14 df-br ( 𝑥 I 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ I )
15 14 anbi2i ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 I 𝑦 ) ↔ ( 𝑥 ∈ { 𝐴 } ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ I ) )
16 5 13 15 3bitr2ri ( ( 𝑥 ∈ { 𝐴 } ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ I ) ↔ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) )
17 6 opelresi ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( I ↾ { 𝐴 } ) ↔ ( 𝑥 ∈ { 𝐴 } ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ I ) )
18 opelxp ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( { 𝐴 } × { 𝐴 } ) ↔ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) )
19 16 17 18 3bitr4i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( I ↾ { 𝐴 } ) ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( { 𝐴 } × { 𝐴 } ) )
20 1 2 19 eqrelriiv ( I ↾ { 𝐴 } ) = ( { 𝐴 } × { 𝐴 } )